
Premiere Pro C++ SDK Guide
Release 24.0

Adobe Systems Incorporated

Feb 09, 2024

HISTORY

1 Version History 1

2 Introduction 3

3 What Premiere Plug-Ins Do 5

4 SDK Audience 7

5 Whats New 9

6 Where Do I Start 23

7 Document Overview 25

8 Getting Support and Providing Feedback 27

9 Premiere Pro Plug-In Types 29

10 Sample Projects 33

11 Debugging Plug-Ins 37

12 Load Em Up 39

13 Plug In Installation 41

14 Localization 45

15 Best Practices 47

16 Resources 49

17 Plug-In Property Lists (PiPL) Resource 51

18 IMPT Resource 53

19 Universals 55

20 Time 57

21 Video Frames 59

22 Pixel Formats And Color Spaces 61

i

23 Pixel Aspect Ratio 69

24 Fields 71

25 Audio 73

26 Memory Management 77

27 Basic Types Structures 79

28 Suites 81

29 SweetPea Suites 83

30 Legacy Callback Suites 99

31 Hardware 109

32 Hardware Integration Components 111

33 ClassID, Filetype and Subtype 113

34 ClassData Functions 115

35 Importers 117

36 What’s New 119

37 Getting Started 125

38 Selector Table 135

39 Selector Descriptions 137

40 Return Codes 153

41 Structures 155

42 Structure Descriptions 157

43 Suites 193

44 Export Controllers 195

45 Exporters 197

46 Whats New 199

47 Getting Started 203

48 Selector Table 211

49 Selector Descriptions 213

50 Return Codes 219

51 Structures 221

52 Structure Descriptions 223

ii

53 Suites 235

54 Additional Details 265

55 Transmitters 267

56 Transmitter Basics 269

57 tmModule Functions 273

58 tmModule Structures 275

59 Suites 283

60 Video Filters 285

61 Whats New 287

62 Getting Started 289

63 Selector Table 293

64 Selector Descriptions 295

65 Return Codes 299

66 VideoRecord 301

67 Additional Details 305

68 GPU Effects & Transitions 307

69 CUDA, OpenCL, Metal, or OpenGL? 309

70 What’s New in Premiere Pro 12.0? 311

71 What’s New in Premiere Pro CC 2015.4? 313

72 What’s New in Premiere Pro CC 2014? 315

73 Getting Started 317

74 PrGPUFilter Function Table 321

75 Function Descriptions 323

76 Return Codes 325

77 Structure Descriptions 327

78 PrGPU SDK Macros 331

79 Suites 335

80 AE Transition Extensions 337

81 PF_TransitionSuite 339

82 Getting Started 341

iii

83 Control Surfaces 343

iv

CHAPTER

ONE

VERSION HISTORY

Date Maintainer Version
23 Oct 2023 Bruce Bullis Version 24.0
6 Oct 2021 Sanaz Golbabaei Version 22.0
8 May 2020 Bruce Bullis Version 14.2
1 May 2019 Bruce Bullis Version 13.1
1 November 2018 Bruce Bullis Version CC 13.0
16 July 2018 Zac Lam Version CC 13.0 pre-release
13 November 2017 Zac Lam Version CC 12.0
6 April 2017 Zac Lam Version CC 2017.1
4 November 2016 Zac Lam Version CC 2017
4 August 2015 Zac Lam Version CC 2015
16 June 2014 Zac Lam Version CC 2014
21 October 2013 Zac Lam Version CC October release
16 July 2013 Zac Lam Version CC
19 June 2012 Zac Lam Version CS6 release 2
30 April 2012 Zac Lam Version CS6 release 1
2 May 2011 Zac Lam Version CS5.5
28 April 2010 Zac Lam Version CS5
21 September 2009 Zac Lam Version CS4
5 October 2007 Zac Lam Version CS3
13 July 2006 Zac Lam Version 2.0 release 2
17 January 2006 Zac Lam Version 2.0 release 1
25 May 2004 Zac Lam Version 1.5
21 August 2003 Zac Lam Version 1.0 (Premiere Pro)
19 July 2002 Zac Lam & Bruce Bullis Version 6.5
10 May 2001 Bruce Bullis Version 6 release 2
10 December 2000 Bruce Bullis & Eric Sanders Version 6 release 1
20 April 1998 Brian Andrews Version 5
9 February 1996 Brian Andrews Version 4.2
13 February 1995 Matt Foster, Nick Schlott Version 4.0 - first Windows release

1

Premiere Pro C++ SDK Guide, Release 24.0

2 Chapter 1. Version History

CHAPTER

TWO

INTRODUCTION

Welcome to the Adobe® Premiere® Pro Software Development Kit!

This is a living document, and is constantly being updated and edited. The latest release of the SDK is available at:
https://www.adobe.io/apis/creativecloud/premierepro.html.

If you have questions about the APIs described in this document, or about integration with Premiere Pro, your
question may already be answered on the Premiere Pro SDK forum at: https://community.adobe.com/t5/forums/
filteredbylabelpage/board-id/premiere-pro/label-name/sdk.

3

http://www.adobe.io/apis/creativecloud/premierepro.html
https://community.adobe.com/t5/forums/filteredbylabelpage/board-id/premiere-pro/label-name/sdk
https://community.adobe.com/t5/forums/filteredbylabelpage/board-id/premiere-pro/label-name/sdk

Premiere Pro C++ SDK Guide, Release 24.0

4 Chapter 2. Introduction

CHAPTER

THREE

WHAT PREMIERE PLUG-INS DO

Premiere APIs provide access to many points of the video editing pipeline.

Recording from an external device, device control, media import and export, video effects and transitions, playback to
external hardware, and integration with control surfaces can all be performed by plugins.

5

Premiere Pro C++ SDK Guide, Release 24.0

6 Chapter 3. What Premiere Plug-Ins Do

CHAPTER

FOUR

SDK AUDIENCE

The Premiere Pro Software Development Kit enables developers to create plugins for Premiere Pro, After Effects,
Audition, Media Encoder, Character Animator, and Premiere Elements.

The required development environment for the Premiere Pro SDK for Windows is Microsoft Visual Studio 2015 Update
3 on Windows 7 or Windows 10 64-bit. When setting up Visual Studio you may need to adjust some installation settings
to install the components for compiling 64-bit plugins. On macOS, the minimum environment is Xcode 7.3 on macOS
10.12 or later.

The SDK includes sample projects for these development environments. On Windows, projects can often be updated to
more current versions of Microsoft Visual Studio by simply opening the project and approving the automatic conversion.
The sample code is written in C++. Other compilers and programming languages are not supported. We cannot assist
with platform API programming issues not central to Premiere Pro plugin programming.

If this is your first time developing a Premiere plugin, you can skip Whats New.

If you are developing on macOS, see a quickstart video on building a plugin using a similar SDK (on macOS):
adobe.ly/2sjMDwM and then go directly to Where Do I Start.

7

Premiere Pro C++ SDK Guide, Release 24.0

8 Chapter 4. SDK Audience

CHAPTER

FIVE

WHATS NEW

5.1 What’s New in 24.0

With the removal of Capture functionality from Premiere Pro, support for Record modules and Device Control plug-ins
have been removed from the SDK.

5.2 What’s New in 15.4

We’ve updated the PrSetEnv.h header, to allow building ARM-native plugins.

5.3 What’s New in 14.2

Cleared the dust and debris off of the SDK source files. ;) The primary motivation for this new SDK release is to
provided updated headers. Example code utilizing those new headers, as well as documentation of their new contents,
will (regrettably) need to wait for another day.

5.4 What’s New in 13.1

Removed “CC” from the product name.

5.5 What’s New in 13.0

The only significant change to Premiere Pro’s C++ APIs for 13.0 is the addition of color-space specifiers to the Importer
API. The ColorProfileRec structure is deprecated; instead, Importers will describe supported colorspaces (in response
to imGetIndColorSpace) using a ColorSpaceRec.

9

Premiere Pro C++ SDK Guide, Release 24.0

5.6 What’s New in 12.0

5.6.1 Effects and Transitions

GPU Effects & Transitions built using this SDK are now compatible with After Effects 15.0 and later. The sample GPU
effect projects have been updated so that they load in both Premiere Pro and After Effects.

The newly provided PrGPU SDK Macros and device functions allow you to write kernels that will compile on CUDA,
and Metal.

Multiple effects and transitions can now be implemented in a single plugin binary, by defining multiple entry points
in software at runtime. The new method for registering entry points will be a replacement for the PiPL resource, and
is currently only supported in Premiere Pro. The sample effects and transitions demonstrate this new method, while
Plug-In Property Lists (PiPL) Resource remains, for backwards-compatibility in PPro, and compatibility with AE.

Sequence Info Suite is now at version 5, adding the new call GetImmersiveVideoVRConfiguration(), which returns the
VR video settings of the specified sequence.

New selector available for Export Info Suite: kExportInfo_SourceBitrate. This returns the source’s bitrate in kbps,
and is not available for all source types. exParamType can now be of type exParamType_thumbnail. A new flag
exParamFlag_verticalAlignment can now be set so that property name and value controls are displayed vertically rather
than side-by-side.

5.7 What’s New in CC 2017.1

5.7.1 Importers

Importers that support captions can make use of the mayHaveCaptions flag in imFileInfoRec8, for better perfor-
mance. Also, a imImageInfoRec is now added to imInitiateAsyncClosedCaptionScanRec, just for the width
and height parameters.

5.7.2 Exporters

Exporters can advertise whether they support color profile embedding. There are also APIs to set color profile in the
exporter, and a flag that controls whether profile is to be embedded. The color profile is passed to an exporter via
exDoExportRec, for it to embed in the output media according to format standards. This is currently used for exports
from After Effects through Media Encoder.

5.7.3 Transmit

New 10-bit and 12-bit RGB HLG formats have been added for expanded HDR support.

In App Info Suite, a new identifier has been added for Character Animator, which now supports transmit plugins.

10 Chapter 5. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

5.7.4 VR Video Support

The Playmod Immersive Video Suite can be used to query whether or not ambisonics monitoring is on or not, in the
VR Video Settings.

5.8 What’s New in CC 2017

5.8.1 VR Video Support added

Transmit plugins can have the VR perspective in the desktop Monitor driven by the Head-Mounted Display, so when the
person with the Head-Mounted Display looks in a different direction, the desktop Monitor shows that same perspective.
To do this, the transmit plugin can use the new Playmod Immersive Video Suite to indicate that it supports tracking.

Once Premiere sees the transmitter supports tracking, when the user activates the VR viewer, the new menu item,
“Track Head-Mounted Display” will become active, and can be toggled to begin tracking. The transmitter should call
NotifyDirection() as frequently it wants with updated info. Premiere will pick up the new position on the next frame
draw.

For importers, imFileInfoRec8 has now been expanded so that if an importer detects that a clip contains VR video, it
can inform Premiere.

5.8.2 New Sample Projects

This SDK includes a new render path for the ProcAmp sample for Metal. This sample requires macOS 10.11.4 and
later.

We’ve also added a sample GPU effect called Vignette, donated by Bart Walczak. This effect has OpenCL, CUDA,
and software render paths. Software rendering in Premiere Pro includes

8-bit/32-bit RGB/YUV software render paths. Software rendering in After Effects includes 8-bit and 32-bit smart
rendering.

And lastly, the Control Surface sample is now cross-platform.

5.8.3 New Panel/Scripting Capabilities

Scripting, the processing underlying HTML5 panels, is consistently being improved upon. In this release, we’ve added
scripting functions to add/modify effect keyframes. See the sample panel code on GitHub:

https://github.com/Adobe-CEP/Samples/tree/master/PProPanel

In particular, see the function onPlayWithKeyframes() in jsx/Premiere.jsx

5.8. What’s New in CC 2017 11

https://github.com/Adobe-CEP/Samples/tree/master/PProPanel

Premiere Pro C++ SDK Guide, Release 24.0

5.8.4 Miscellaneous

In Video Segment Render Suite, new versions of various calls have been added with an additional boolean value that
allows renders to skip rendering of non-intrinsic effects.

5.9 What’s New in CC 2024.0

The Transmit API has been expanded to enable multiple audio outputs, and plug-ins which stream video and audio
information.

5.10 What’s New in CC 2015.4

5.10.1 Metal rendering for Effects and Transitions

GPU-accelerated rendering using Metal is now supported for third-party effects and transitions. PrGPUDeviceFrame-
work_Metal has been added as one of the enum values in PrGPUDeviceFramework.

5.11 What’s New in CC 2015.3?

5.11.1 Control Surfaces

New suites have been added for Control Surfaces to support the Lumetri Color panel. Most controls are supported,
including the color wheels, but not including the Curves controls.

There is now a shared location for Control Surface plugins. On Mac:

/Library/Application Support/Adobe/Common/Plugins/ControlSurface, and

~/Library/Application Support/Adobe/Common/Plugins/ControlSurface

On Win:

C:Program FilesAdobeCommonPluginsControlSurface

5.11.2 Importers

Video duration can now be reported as a 64-bit integer, using the new imFileInfoRec8. vidDurationInFrames, to support
longer file lengths. There is also a new suite function, SetImporterInstanceStreamFileCount(), for importers to specify
how many files they open.

12 Chapter 5. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

5.11.3 Exporters

New flags can be set in exExporterInfoRec.flags, to restrict an exporter from being used in a way that doesn’t make
sense. Now, an exporter can specify that video-only export is not supported. Also, an exporter can turn off the Publish
tab if it chooses to.

5.11.4 Effects

Source settings effects should use the updated Source Settings suite with new

SetIsSourceSettingsEffect() function. They should make this call during PF_Cmd

GLOBAL_SETUP. This function was added to handle the case when the effect is applied to proxy video.

5.11.5 Misc

Using the Sequence Info Suite, a new call has been added, GetProxyFlag(), for a plugin to know whether the proxy
mode is on or off.

5.12 What’s New in CC 2015.1?

5.12.1 Transmit

Native support for 12-bit Dolby PQ pixel formats, with Rec. 709, P3, and Rec. 2020 primaries, have been added.

5.13 What’s New in CC 2015?

5.13.1 After Effects-Style Transitions

AE-style Transitions can now get and set transition start and end percentages. The user can change the start
and end parameters in the Effect Controls panel. To allow a plugin to be informed of changes to these values,
there are two new functions in the PF TransitionSuite: RegisterTransitionStartParam() and RegisterTransitionEnd-
Param(), which register these parameters with the plugin as float parameters. Once registered, the plugin will receive
PF_Cmd_USER_CHANGED_PARAM when these params change, as well as when the transition is first applied, so the
plugin can initialize them to the desired value.

AE-style Transitions can now retrieve GPU frames from arbitrary locations in the underlying clips. There is a new
PrGPUDependency_TransitionInputFrame, and PrGPUFilterFrameDependency has a new member to specify whether
frames from the incoming or outgoing clips are needed.

5.12. What’s New in CC 2015.1? 13

Premiere Pro C++ SDK Guide, Release 24.0

5.13.2 Source Settings = Effect + Importer

Source Settings for clips can now be implemented using effects that are tied to importers. This has the advantage of
providing settings in the Effect Controls panel, rather than in a modal dialog. Editors can adjust Source Settings for
multiple clips this way. These effects are used for the DPX source settings, CinemaDNG, etc.

To implement this, an importer should set imImportInfoRec.hasSourceSettingsEffect to true. Then in imFile-
InfoRec8, it should set sourceSettingsMatchName to the match name of the effect to be used for the Source Settings.

On the effects side, a new PF Source Settings Suite has been added to PrSDKAESupport.h, for effects using the After
Effects API. This is how an effect registers a function to handle the Source Settings command.

A source settings effect is used primarily for the parameter UI and management. A source settings effect doesn’t
provide the actual frames. In fact, the effect isn’t even called with PF_Cmd_RENDER. The frames come directly from
the importer, which provides frames based on the settings as passed to the importer via prefs data.

When a clip is first imported, the effect is called with PF_Cmd_SEQUENCE_SETUP. It should call PerformSource-
SettingsCommand() in the Source Settings Suite, to initialize the prefs. This causes the importer to get called with
imPerformSourceSettingsCommand, where it can read the file and set the default prefs. param1 of that function is
imFileAccessRec8*, and param2 is imSourceSettingsCommandRec*.

When the source settings effect parameters are changed, the effect gets called with
PF_Cmd_TRANSLATE_PARAMS_TO_PREFS. The function signature is:

PF_Err TranslateParamsToPrefs(
PF_InData* in_data,
PF_OutData* out_data,
PF_ParamDef* params[],
PF_TranslateParamsToPrefsExtra *extra)

With the new prefs, the importer will be sent imOpenFile8, imGetInfo8, imGetIndPixelFormat, imGetPreferredFrame-
Size, imGetSourceVideo, etc.

imSourceSettingsCommandRec and PF Source Settings Suite allow the effect to communicate directly with the im-
porter, so that it can initialize its parameters properly, based on the source media. In the DPX source settings effect,
for example, in PF_Cmd_SEQUENCE_SETUP, it calls PF_SourceSettingsSuite->PerformSourceSettingsCommand(),
which calls through to the importer with the selector imPerformSourceSettingsCommand. Here, the importer opens the
media, looks at the header and initializes the prefs based on the media. For

DPX, the initial parameters and default prefs are based on the bit depth of the video. These default prefs are passed
back to the effect, which sets the initial param values and stashes a copy of them in sequence_data to use again for
future calls to PF_Cmd_SEQUENCE_RESETUP.

5.13.3 Importers

For any importers that are using imClipFrameDescriptorRec, note that the structure definition has changed. Any im-
porters that use this in both CC 2014 and CC 2015 or later will need to do a runtime check before accessing the members
of this structure.

14 Chapter 5. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

5.13.4 Exporters

Exporters can now use standard parameters for audio channel configuration, as used with the built-in QuickTime ex-
porter. The new exporter parameters ADBEAudioChannelConfigurationGroup and ADBEAudioChannelConfigura-
tion supercede ADBEAudioNumChannels. The new Export Audio Param Suite can be used to query/change the audio
channel configuration.

The Sequence Audio Suite is now at version 2, revising MakeAudioRenderer() to take PrAudioChannelLabel* as
a parameter.

5.13.5 Transmitters

Transmitters can get a few new bits of information to aid with A/V sync. In the Playmod Audio Suite, the new function
GetNextAudioBuffer2() returns the actual time the rendered buffer is from.

Also, in tmPlaybackClock, the new members inAudioOffset and inVideoOffset have been added to specify the
offset chosen by the user in the preferences.

The host accounts for these offsets automatically by sending frames early, but if a transmitter is manually trying to line
up audio and video times, it can use this to know how far apart from each other they are supposed to be.

5.13.6 Miscellaneous

Legacy callbacks bottlenecks->ConvolvePtr() and IndexMapPtr() have had their parameter types updated to fix a bug.
Any plugins that use these in both previous versions and CC 2015 will need to do a runtime check before calling this
function.

Starting in CC 2015, we now provide installer hints for Mac. You’ll find a new plist file “com. Adobe.Premiere
Pro.paths.plist” at “/Library/Preferences”. This contains hints for your Mac installer to know where to install plugins,
and is similar to the registry entries we have been providing on Win.

5.13.7 New Sample Projects

This SDK includes updated GPU effect and transition samples that demonstrate GPU rendering. Thanks to Rama
Hoetzlein from nVidia for the CUDA render path provided for the SDK_CrossDissolve sample!

A barebones Control Surface sample is now provided, too.

5.14 What’s New in CC 2014 (8.2)?

Importers now have more visibility into the player’s intent on a given async request, since the render context info is
now passed in imSourceVideoRec.inRenderContext. Async importers can implement aiSelectEfficientRenderTime to
specify if a frame request would be more efficient at another frame time, for example at I-frame boundaries. The Video
Segment Render Suite has been updated to version 4, adding new calls that include imRenderContext as a parameter.

5.14. What’s New in CC 2014 (8.2)? 15

Premiere Pro C++ SDK Guide, Release 24.0

5.15 What’s New in CC 2014 (8.1)?

Importers that support growing files now get a hint if the host knows the file has stopped growing:

imFileInfoRec8.ignoreGrowing.

Exporters can now get the list of source pixel formats used by the clips in a sequence that is being smart rendered.
GetExportSourceInfo(. . . , kExportInfo_SourcePixelFormat, . . .) provides this information.

5.16 What’s New in CC 2014 (8.0.1)?

Importers can fill in imImageInfoRec.codecDescription to provide a string that will be displayed for clips in the Video
Codec column of the Project panel.

5.17 What’s New in CC 2014?

Importers can now choose the format they are rendering in, which allows importers to change pixel formats and quality
based on criteria like enabled hardware and other source settings, such as HDR. To handle the negotiation, implement
imSelectClipFrameDescriptor.

imSourceVideoRec now includes a quality attribute. PPix Cache Suite is now at version 6, adding AddFrameToCache-
WithColorProfile2() and

GetFrameFromCacheWithColorProfile2(), which are the same as the ones added in version 5 with the addition of a
PrRenderQuality parameter.

imFileInfoRec8.highMemUsage is no longer supported.

A new recorder return code was added, rmRequiresRoyaltyContent. Return this from

recmod_Startup8 or recmod_StartRecord, if the codec used is unlicensed.

OpenCL rendering now also uses the half-precision 16-bit floating point pixel format for rendering. GPU effects and
transitions that support OpenCL should implement both 16f and 32f rendering.

A new plugin API has been introduced for hardware Control Surfaces. This is the API that allows support for EUCON
and Mackie devices to control audio mixing and basic transport controls. The API supports two-way communication
with Premiere Pro, so that hardware faders, VU meters, etc are in sync with the application.

Premiere Pro is now localized in Russian and Brazilian Portugese.

16 Chapter 5. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

5.18 What’s New in CC October 2013?

We’ve extended the After Effects API to support native transitions in Premiere Pro.

For device controllers, the new command cmdSetDeviceHandler was added. This command tells the device controller
which panel is using the device controller – either the Capture panel, or Export to Tape panel.

For importers, imInitiateAsyncClosedCaptionScanRec now provides extra fields for the importer to fill in the estimated
duration of all the captions. This is useful for certain cases where the embedded captions contain many frames of empty
data.

We added version 2 of the Export File Suite to resolve a mismatch in seek modes.

5.19 What’s New in CC July 2013?

The only significant additions made in the July 2013 update to version CC are in the device controller API.

5.20 What’s New in CC?

5.20.1 New Edit to Tape Panel

You can think of this as the Export to Tape equivalent of the Capture panel for capturing, which provides a video
preview and various settings in the PPro UI. Among the benefits are more seamless integration, a more familiar UI
for users, integrated device presets, and some new capabilities like adding Bars and Tone / Black Video / Universal
Counting Leader to the start of your layoff to tape. To use this new feature, read more about what’s new in the device
controller API.

5.20.2 New GPU Extensions for Effects and Transitions

New GPU Extensions to existing APIs allow effects and transitions to access video frames in GPU memory, when using
the Mercury Playback Engine in a GPU-accelerated mode. See GPU Effects & Transitions for more information.

5.20.3 Closed Captioning Support in Importer and Exporter APIs

The importer and exporter APIs have been extended to support closed captioning embedded in media. Note that
Premiere Pro can also import and export captions in a sidecar file (e.g. .mcc,

.scc, or .xml) alongside any media file, regardless of the media file format.

5.18. What’s New in CC October 2013? 17

Premiere Pro C++ SDK Guide, Release 24.0

5.20.4 Miscellaneous Improvements

• A new pixel format for native 10-bit RGB support - PrPixelFormat_RGB_444_10u, as well as
PrPixelFormat_UYVY_422_32f_* formats

• VST 3 support allows many more audio plugins to run in Premiere Pro

• Windows installer improvements, by adding new registry values for preset and settings locations.

• Get the current build number via the App Info Suite

• Importers can now support audio beyond basic mono, stereo, and 5.1, without implementing multiple streams,
and importers can return varying pixel formats depending on the clip settings. Read more about what’s new for
importers.

• Exporters can get the number of audio channels in the source, and check if the user has checked “Use Previews”
in the Export Settings dialog. They can also move an existing settings parameter to a different location. Read
more about what’s new for exporters.

• The Sequence Info Suite can retrieve the field type, zero point, and whether or not the timecode is drop-frame

• New flags to the transition API as a hint to optimize rendering when a transition only has an input on one side

• The Video Segment Suite provides access to a new property: Effect_ClipName

Premiere Pro is now localized in Chinese.

5.21 What’s New in CS6.0.x?

CS6.0.2 adds more support for growing files in importers. A transmitter can now label its audio channels for the Audio
Output Mapping preferences.

CS6.0.1 gives device controllers a way to get the number of frames dropped during an insert edit, to abort an Export
to Tape if desired. This method is already superceded by the new Edit to Tape panel functionality in CC.

5.22 What’s New in CS6?

5.22.1 Transmit API

We are introducing the Transmit API as the preferred means for external hardware monitoring. This new API provides
vastly simplified support for monitoring on external hardware. Transmit plugins offer more flexible usage, since they
are not tied to the sequence Editing Mode, which cannot be changed once a sequence has been edited. Transmitters
can be specified by the user in Preferences > Playback. Other plugins such as importers and effects with settings
preview dialogs can send video out to the active transmitter, opening up new possibilities for hardware monitoring. See
Transmitters for more details.

18 Chapter 5. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

5.22.2 Exporter Enhancements

Exporters can now use “push” model compression. This can simplify export code and improve performance. The
“pull” model is still supported, and required for legacy versions and Encore.

We’ve added the Export Standard Param Suite, which provides the standard parameters used in many built-in exporters.
This can greatly reduce the amount of code needed to manage standard parameters for a typical exporter, and guarantee
consistency with built-in exporters.

Exporters can now set tooltip strings for parameters. Multiple exporters are now supported in a single plugin. And the
Maximum Render Precision flag is now queried from the exporter, rather than being handled without the exporter’s
knowledge.

Exporters can now set events (error, warning, or info) for a specific encode in progress in the Adobe Media Encoder
render queue, using the new Exporter Utility Suite. These events are displayed in the application UI, and are also added
to the AME encoding log.

Make sure your presets go in the right location in the new AME Preset Browser. Read additional details of what’s new
in Exporters.

5.22.3 Stereoscopic Video Pipeline

We are also adding API support for stereoscopic video throughout the render pipeline. This affects importers, effects
built using the After Effects API, and exporters.

5.22.4 Other Changes

Importers can now support growing files in Premiere Pro. We have also added a way for importers to specify all their
source files to be copied by Collect Files in After Effects. There is also a new function in the Media Accelerator Suite
to validate the content state of a media accelerator. See additional details of what’s new in Importers.

For Recorders, the parent window handle is now properly passed in during recmod_ShowOptions

when a recorder should display its modal setup dialog.

For Players, pmPlayerSettings has a new member, mPrimaryDisplayFullScreen, which indicates whether or not the
player should display fullscreen.

Device controllers have a new callback, DroppedFrameProc, to provide the feature to abort and Export to Tape if
frames are dropped.

New video segment properties were added:

• kVideoSegmentProperty_MediaClipScaleToFramePolicy,

• kVideoSegmentProperty_AdjustmentAdjustmentMediaIsOpaque,

• kVideoSegmentProperty_AdjustmentOperatorsHash,

• kVideoSegmentProperty_Media_InPointMediaTimeAsTicks,

• kVideoSegmentProperty_Media_OutPointMediaTimeAsTicks,

• kVideoSegmentProperty_Clip_TrackItemStartAsTicks,

• kVideoSegmentProperty_Clip_TrackItemEndAsTicks,

• kVideoSegmentProperty_Clip_EffectiveTrackItemStartAsTicks,

• kVideoSegmentProperty_Clip_EffectiveTrackItemEndAsTicks

5.22. What’s New in CS6? 19

Premiere Pro C++ SDK Guide, Release 24.0

The Memory Manager Suite is now at version 4. AdjustReservedMemorySize provides a way to adjust the reserved
memory size relative to the current size. This may be easier for the plugin, rather than maintaining the absolute memory
usage and updating it using the older ReserveMemory call.

MPEG-4 pixel formats and full-range Rec. 709 MPEG-2 and MPEG-4 formats have now been added for native support
in the render pipeline.

5.23 What’s New in CS5.5?

Importers can now support color management, when running in After Effects. Now, even nonsynthetic importers can
explicitly provide peak audio data. And a new return value allows an importer to specify that it is dependent on a library
that needs to be activated. See additional details of what’s new in Importers.

Players can now support closed captioning. See additional details of what’s new in the players chapter.

Exporters now have a call to request a rendered frame and then conform it to a specific pixel format. See additional
details of what’s new in Exporters.

We have opened up a new Export Controller API that can drive any exporter to output a file in any format and perform
custom post-processing operations. Developers wanting to integrate Premiere Pro with an asset management system
will want to use this API instead of the exporter API. See Export Controllers for more details.

A new pair of pixel formats was added to natively support full-range Rec. 601 4:2:0 YUV planar video, both pro-
gressive and interlaced: PrPixelFormat_YUV_420_MPEG2_FRAME_PICTURE_PLANAR_8u_601_FullRange and
PrPixelFormat_YUV_420_MPEG2_FIELD_PICTURE_PLANAR_8u_601_FullRange.

The Video Segment Suite now provides a new call to retrieve a segment node for a requested time. There are also a few
new properties for media nodes:

StreamIsContinuousTime, ColorProfileName, ColorProfileData, and

ScanlineOffsetToImproveVerticalCentering.

The Sequence Info Suite now provides a call to get the sequence frame rate, which may be useful for effects.

The Image Processing Suite has a new call to set the aspect ratio flag of a DV frame.

5.24 What’s New in CS5?

Importers now have access to the resolution, pixel aspect ratio, timebase, and audio sample rate of the source clip
from a setup dialog. Custom importers can use a new call to update a clip after it has modified by the user in the setup
dialog. Please refer to Importers for more info on what’s new.

Recorders can now provide audio metering during preview and capture.

Exporters and players can automatically take advantage of GPU acceleration, if available on the end-user’s system.
Each project now has a setting for the renderer that the user can choose in the project settings dialog. When renders
occur through the Sequence Render Suite or the Playmod Render Suite, they now go through the renderer chosen for
the current project. This allows third-party exporters and players to use the built-in GPU acceleration available in the
new Mercury Playback Engine.

Exporters and players can now handle any pixel format, with the new Image Processing Suite. Exporters and players
that parse segments and perform their own rendering can now call the host for subtree rendering. See the Video Segment
Render Suite for details.

20 Chapter 5. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

If you provide an installer for an exporter, note that custom presets created in Premiere Pro are now visible in AME
and vice-versa.

5.24.1 Mac 64-Bit and Cocoa

It is invalid to unload any bundle that uses Cocoa because of restrictions in the Objective-C runtime which do not
support unregistering classes. If a plugin uses Cocoa, it must call CFRetain on its own bundle, otherwise it will cause
a crash when the application is closing and tries to unload the plugins.

5.25 What’s New in CS4?

5.25.1 New Renderer API and Custom Pixel Formats

The new renderer API provides a way to take over and accelerate rendering of segments. Just as a player can choose
which segments to accelerate, so a renderer can choose which segments to accelerate. Renderers may accelerate any
segment, in any sequence, in any project.

Renderers also provide a way to add completely custom pixel formats to the render pipeline. Supporting a custom pixel
format in an importer, a renderer, and an exporter is the new way to implement smart rendering, by passing custom
compressed data from input to output.

5.25.2 Sequence Preview Formats

Sequence preview file formats are now defined by Sequence encoder preset files. Without any presets installed, you
will not be able to create a new sequence using your custom editing mode.

5.25.3 Separate Processes During Export

When choosing export settings, the settings UI is displayed by Premiere Pro. When the user confirms the settings, the
clip or sequence is passed to Media Encoder. From Media Encoder, frames from the clip or sequence can be retrieved
and rendered without further participation from Premiere Pro. For a clip export, Media Encoder uses any installed
importers to get source frames. For sequence export, Media Encoder uses a process called PProHeadless, to import
and render frames to be exported.

Since there are so many processes involved during export, it is important that plugins be accessible to all processes,
by being installed in the common plugins folder. PProHeadless Plugin Loading.log provides information on the PPro-
Headless process. PProHeadless is also used when the user creates a dynamic link to a .prproj that is not opened in
Premiere Pro.

5.25.4 XMP metadata

There are built-in XMP metadata handlers for known filetypes. These handlers write and read metadata to and from
the file, without going through the importer. imSetTimeInfo8 is no longer called, since this is set by the XMP handler
for that filetype.

5.25. What’s New in CS4? 21

Premiere Pro C++ SDK Guide, Release 24.0

5.25.5 More Pixel Format Flexibility

Effects, transitions, and exporters no longer need to support 8-bit RGB at a minimum. So, for example, an effect can
be written to process floating point YUV only. If necessary, Premiere will make an intermediate conversion so that the
effect will receive the pixel format it supports.

5.26 Legacy API

Legacy API features, such as selectors and callbacks that are superceded by new ones, are deprecated, but are supported,
unless indicated.

22 Chapter 5. Whats New

CHAPTER

SIX

WHERE DO I START

Read about the sample projects. Decide which one is closest to the functionality you want to provide. Build the plugin
into the shared plugins folder.

Launch Premiere Pro with the debugger attached, and set breakpoints at the plugin’s entry point to see all communica-
tion between Premiere Pro and the plugin.

The documentation is intended as a reference with detailed explanation where appropriate, but studying the interaction
between Premiere Pro and plugins is the best way to understand it.

Write plugins by modifying sample plugin source code. This will greatly simplify your efforts, and make it easier for
us to help you. Feel free to explore and experiment with the API on your own once you’re familiar with it, but please,
resist the temptation to start from scratch; you’ll only force yourself to repeat other developers’ mistakes, including our
own.

If you run into behavior that seems wrong, see if you can reproduce the behavior using one of the unmodified sample
projects. This can save you a lot of time, if you can determine whether the bug behavior was introduced by your
modifications, or was already there to begin with.

23

Premiere Pro C++ SDK Guide, Release 24.0

24 Chapter 6. Where Do I Start

CHAPTER

SEVEN

DOCUMENT OVERVIEW

This introduction information is common to all the plugin types.

All developers should read this chapter, and browse through chapters two and three before diving too deep into plugin
development.

Resources is a short chapter that describes the Premiere Pro-specific resources used by plugins, including the Plug-in
Property List (PiPL).

Universals documents concepts, data types, and structures used throughout the APIs. It also describes suites and
functions used by more than one type of plugin.

Hardware introduces Media Abstraction, used by hardware integrators and software developers to integrate with Pre-
miere and accelerate specific workflows.

This document is designed to be read non-linearly. You can browse through the topics from the bookmarks that appear
in the left-hand panel in Acrobat, or the right-hand panel in the Preview application on macOS. A simple search for a
well-chosen keyword will also turn up much information on any given topic.

7.1 Documentation Conventions

Functions, structure names and general C/C++ code are in Courier; MyStruct.member and MyFunction()

Underlined text in light blue is hyperlinked. Premiere selectors are italicized; imGetPrefs.

25

Premiere Pro C++ SDK Guide, Release 24.0

26 Chapter 7. Document Overview

CHAPTER

EIGHT

GETTING SUPPORT AND PROVIDING FEEDBACK

Please read relevant sections of this document and view the included sample code before requesting assistance. Please
direct questions regarding installation, configuration, or use of Adobe products to Adobe Technical Support.

Having a solid understanding of digital video concepts is vital to developing plugins. This documentation assumes you
understand basic video topics such as resolution, frame rates, field interlacing, pixel aspect ratio, bit depth, timecode,
compression, color spaces, etc. You must also understand how your plugin will fit into a user’s workflow in Premiere
Pro. If you aren’t yet familiar with Premiere Pro or video editing concepts, we recommend the Adobe Premiere Pro
Classroom in a Book.

Use the Premiere Pro SDK forum to ask questions on the API and general integration.

https://community.adobe.com/t5/forums/filteredbylabelpage/board-id/premiere-pro/label-name/sdk

27

https://community.adobe.com/t5/forums/filteredbylabelpage/board-id/premiere-pro/label-name/sdk

Premiere Pro C++ SDK Guide, Release 24.0

28 Chapter 8. Getting Support and Providing Feedback

CHAPTER

NINE

PREMIERE PRO PLUG-IN TYPES

Type Description
Importers Import video and audio media into Premiere.

Synthetic importers, a subset, dynamically synthesize media without creating an actual file on disk.
Custom importers, dynamically synthesize media to disk.

Export
Con-
trollers

Can drive any exporter to generate a file in any format and perform custom post-processing operations.
Developers wanting to integrate Premiere Pro with an asset management system will want to use this
API instead of the exporter API.

Exporters Allows the user to output media to disk.
Transmit-
ters

Sends video, audio, and closed captioning to any external device during playback and editing.

Video Fil-
ters

We strongly recommend using the After Effects SDK to develop effects plugins. Most of the
effects included in Premiere Pro are After Effects plugins.
Process a series of video frames with parameters that can be animated over time.

GPU
Effects &
Transi-
tions

Process two video sources into a single destination over time.
This API is based on the After Effects API, with certain functions to enable transition functionality in
Premiere Pro.

Control
Surfaces

Interface with a hardware control surface to support audio mixing, basic transport controls, and the
Lumetri Color panel.
The API supports two-way communication with Premiere Pro, so that motorized hardware faders, VU
meters, etc can be in sync with the application.

9.1 Other Supported Plug-In Standards

Type Description
Adobe
After
Effects
API

Premiere Pro supports a portion of the AE API.
The After Effects SDK is not included in the Premiere Pro SDK. The last chapter in the After Effects
SDK Guide.pdf, included in the After Effects SDK, contains information on known differences with how
Premiere Pro supports the AE API.

VST Starting in CC, Premiere supports version 3 of the VST specification for audio effects. In CS6.x and
previous versions, support was limited to version 2.4.

ASIO An ASIO driver is often provided in addition to a transmit plug-in, to provide audio output during editing,
playback, and Export To Tape.
Prior to CS6, an ASIO driver was required to support audio input for voiceover recording in the audio
mixer. On macOS, a Core Audio component may be provided rather than an ASIO driver.

Core
Audio

macOS only. May be provided instead of an ASIO driver.

29

Premiere Pro C++ SDK Guide, Release 24.0

9.1.1 Plug-in Support Across Adobe Video and Audio Applications

This chart shows which third-party plugins are supported by the various Video and Audio applications.

Premiere
Pro

After
Effects

Media En-
coder

Audi-
tion

Character Ani-
mator

Pre-
lude

After Effects AEGPs X
After Effects effects X X
After Effects transi-
tions

X

ASIO X X X X
Control Surfaces X X
CoreAudio X X X X
Premiere device con-
trollers

X

Premiere export con-
trollers

X

Premiere exporters X X X X
Premiere importers X X X X X
Premiere recorders X
Premiere transmitters X X X X
Premiere video filters X
QuickTime codecs X X X X X
Transitions X
VfW codecs X X X X X
VST audio effects X X

9.1.2 Premiere Elements Plug-in Support

Premiere Elements uses the same core libraries for plug-in support that Premiere Pro does, although Premiere Elements
is 32-bit, whereas Premiere Pro is 64-bit starting with CS5.

Premiere Elements version Equivalent Premiere Pro API version
12 CS6
11 CS5.5
10 CS5.5
9 CS5
8 CS4

It’s always important to test the plug-in fully in each application before advertising compatibility.

Check out Guidelines for Exporters in Premiere Elements for instructions on how to set up your exporter to be used in
Premiere Elements.

30 Chapter 9. Premiere Pro Plug-In Types

Premiere Pro C++ SDK Guide, Release 24.0

9.1.3 What Exactly Is a Premiere Pro Plugin?

Premiere plugins contain a single entry point of a type specific to each API.

Plugins are DLLs on Windows, and Carbon or Cocoa Bundles on macOS.

Plug-ins in the \Plug-ins[language] folder, and any of its subfolders, will be loaded at launch.

Plugins can have private resources.

Only one plug-in per file is parsed, unlike After Effects and Photoshop plugins, which can contain multiple entry points.

9.1. Other Supported Plug-In Standards 31

Premiere Pro C++ SDK Guide, Release 24.0

32 Chapter 9. Premiere Pro Plug-In Types

33

Premiere Pro C++ SDK Guide, Release 24.0

CHAPTER

TEN

SAMPLE PROJECTS

10.1 Descriptions

NameDescription
SDK
File
Im-
porter

This importer supports .sdk media files.
To use the importer, choose File > Import, and select an .sdk file. Such files may be created using the SDK
Exporter.
It supports uncompressed 8-bit RGB with or without alpha, and packed 10-bit YUV (v410). It supports
mono, stereo, and 5.1 audio at arbitrary sample rates and 32-bit float. It supports trimming using the Project
Manager, Properties and Data Rate Analysis, Unicode filenames, the avoidAudioConform flag, and can read
video frames asynchronously. It also features a test harness for multistream audio, which can be turned on
by uncommenting the MULTISTREAM_AUDIO_TESTING define in the header.

Synth
Im-
port

This synthetic importer generates 8-bit YUV and RGB, video only.
To use it, choose File > New > SDK Synthetic Importer.
When the clip is created, it demonstrates a sample settings dialog, which can be displayed again by double-
clicking the clip in the Project Panel or Timeline Panel.
Every time the settings dialog is displayed, it creates new footage in memory. It creates ten seconds of footage
at 24 fps. The video consists of horizontal lines of random colors.
No file is created on disk for an example of that, see the Custom Importer.

SDK
Cus-
tom
Im-
port

This custom importer creates a clip similar to the Synth Import sample, but generates it to disk, rather than
memory.
To use it, choose File > New > SDK Custom Importer.
Or, import an existing .sdkc clip from the File > Import dialog.
On Windows, newly generated files with .sdkc file extensions are created in C:WindowsTemp. On macOS,
they are created on the Desktop.
After the sample settings dialog, it optionally displays a background frame from the timeline (useful for
titlers).
The generated footage is between 2 and 30 frames at 24 fps, with a random resolution between 32 and 720
pixels wide and between 32 and 480 high, at DV NTSC pixel aspect ratio.

Ex-
port-
Con-
troller

Adds a new menu item to File > Export > SDK Export Controller.
When selected, it displays a simple message box on Windows, takes the DV NTSC widescreen preset, and
exports a file to C:\Windows\Temp on Windows, or to the Desktop on macOS.

SDK
Ex-
porter

This exporter writes .sdk files.
To use it, choose File > Export > Media, and in the Export Settings choose File Type: SDK File.
It supports uncompressed 8-bit RGB with or without alpha, and packed 10-bit YUV (v410).
It supports mono, stereo, and 5.1 audio at arbitrary sample rates and 32-bit float.
It demonstrates custom parameters, including a custom settings button.
It also writes marker data to an .html file with the same filename.
To write files with v410 compression using 8-bit RGB sources, this sample uses routines to convert the 8-bit
RGB data to 32-bit RGB, then to 32-bit YUV, and finally to v410.
These same routines may be adapted for transitions, filters, and other plugin types.

Trans-
mit-
ter

The sample transmit plugin does not output to any hardware, but can be used to step through interactions
between the host and plugin in the debugger.
To use it, go the the Preferences > Playback, and choose the SDK Transmitter as the Audio Device, and as a
Video Device.
This transmit plugin provides the basic structure, separating concepts of plugin and instance. For video, it
declares support for any pixel format and resolution.
For audio, it declares support for 2 channels. It also declares a small latency value for demonstrative purposes.
On Windows, there is some basic debug logging.
It does not actually provide it’s own clock at this time, but on playback it simply pretends to step forward a
frame with every frame received.
This may result in some bug behavior such as playing back at speeds faster or slower than normal, depending
on how fast the host can push frames.

SDK_ProcAmpThis GPU-accelerated effect demonstrates a simple ProcAmp effect using the After Effects API with the
Premiere Pro GPU extensions.
The effect is found in the SDK folder of the Video Effects in the Effects Control panel.
It supports Metal acceleration.
This sample requires macOS 10.11.4 and later.

Vi-
gnette

This effect creates a vignette on video using the After Effects API with the Premiere Pro GPU extensions.
Has CUDA and software render paths.
Software rendering in Premiere Pro includes 8-bit/32-bit RGB/ YUV software render paths.
Software rendering in After Effects includes 8-bit and 32-bit smart rendering.
Thanks to Bart Walczak for donating this sample.

SDK_CrossDissolveThis GPU-accelerated transition demonstrates a simple cross dissolve transition using the After Effects API
with the transition extensions.
The transition is found in the SDK folder of the Video Transitions in the Effects Control panel.
It supports CUDA acceleration.

Con-
trol-
Sur-
face

You should see the plugin in the PPro UI in Preferences > Control Surface, when you hit the Add button, as
one of the options in the Device Class drop-down next to Mackie and EUCON (currently shows as “SDK
Control Surface Sample”).
Just a starting point for you to add your functionality.

34 Chapter 10. Sample Projects

Premiere Pro C++ SDK Guide, Release 24.0

10.2 How To Build the SDK Sample Projects

The required development environment is described in SDK Audience.

See a quickstart video on building an effect using a similar SDK (on macOS): adobe.ly/2sjMDwM

We’ve combined the sample projects into a single master project, stored in the Examples folder of the SDK.

For macOS it is BuildAll.xcodeproj; for Windows, it is _BuildAll.sln.

You’ll need to specify some settings so that the plugins are built into a folder where they will be loaded by the application
you are developing for.

We recommend plugins be built into the following folder for macOS: /Library/Application Support/Adobe/
Common/Plug-ins/[version]/MediaCore/

Version is locked at 7.0 for all CC versions, or CSx for earlier versions.

For example: /Library/Application Support/Adobe/Common/Plug-ins/7.0/MediaCore/

or: /Library/Application Support/Adobe/Common/Plug-ins/CS6/MediaCore/

and the following path for Windows:

[Program Files]\Adobe\Common\Plug-ins\[version]\MediaCore\\

for example: C:\Program Files\Adobe\Common\Plug-ins\7.0\MediaCore\\

or: C:\Program Files\Adobe\Common\Plug-ins\CS6\MediaCore\\

Note that this Windows path is only recommended for development purposes.

In Xcode, set the build location for the project in File > Project Settings. Press the Advanced button. Under Build
Location choose Custom, select Absolute, and set the Products path.

In Visual Studio, for convenience, we have set the Output File for all sample projects to use the base path set by the
environment variable PREMSDKBUILDPATH. You’ll need to set this as a user environment variable for your system,
and shown in the screenshot below.

10.2. How To Build the SDK Sample Projects 35

Premiere Pro C++ SDK Guide, Release 24.0

1) On Windows, right-click My Computer > Properties, and in the left sidebar choose Advanced System Settings.

2) In the dialog that appears, hit the Environment Variables button.

3) In the User variables, create a new variable named PREMSDKBUILDPATH, with the path as described above.
(e.g. “C:Program FilesAdobeCommonPlug-ins[version]MediaCore").

4) Log out of Windows, and log back in so that the variable will be set.

When compiling the plugins, if you see a link error such as:

“Cannot open file “[MediaCore plugins path]plugin.prm”, make sure to launch Visual Studio in administrator mode.
In your Visual Studio installation, right-click devenv.exe, Properties > Compatibility > Privilege Level, click “Run this
program as an administrator”.

It’s not recommended to copy plugins into the plugin folder after you’ve built them, because that won’t allow you to
debug the plugins while the host application is running.

36 Chapter 10. Sample Projects

CHAPTER

ELEVEN

DEBUGGING PLUG-INS

Once you’ve got the plugin building directly into the plugins folder as explained above, here’s how to specify Premiere
Pro as the application to run during debug sessions:

On Windows:

1) In the Visual Studio solution, in the Solution Explorer panel, choose the project you want to debug

2) Right-click it and choose Set as StartUp Project

3) Right-click it again and choose Properties

4) In Configuration Properties > Debugging > Command, provide the path to the executable file of the host appli-
cation the plugins will be running in (this may be Premiere Pro or After Effects)

5) From there you can either hit the Play button, or you can launch the application and later at any point choose
Debug > Attach to Process. . .

On macOS:

1) In Xcode, in the Project Navigator, choose the xcodeproj you want to debug

2) Choose Product > Scheme > Edit Scheme. . .

3) Under Run, in the Info tab, for Executable, choose the host application the plugins will be running in (this may
be Premiere Pro or After Effects)

4) From there you can either hit the Play button to build and run the current scheme, or you can launch the application
and later at any point choose Debug > Attach to Process.

Another way to do this in Visual Studio is by placing a line of code

_asm int 3;

or

DebugBreak();

You will then receive the Microsoft error reporting message, but if you hit the Debug button you will enable Just-In-
Time Debugging and can attach to the process.

37

Premiere Pro C++ SDK Guide, Release 24.0

38 Chapter 11. Debugging Plug-Ins

CHAPTER

TWELVE

LOAD EM UP

12.1 Plug-in Caching

On its first launch, Premiere Pro loads all the plugins, reads the Plug-In Property Lists (PiPL) Resource, and sends any
startup selectors to determine the plugins’ capabilities. To speed up future application launches, it saves some of these
capabilities in what we call the plugin cache (the registry on Windows, a Property List file on macOS).

The next time the application is launched, the cached data is used wherever possible, rather than loading all the plugins
on startup. Using this changed data will make the application launch faster, but for a small set of plugins that need to
be initialized every time, it may be undesirable. These include plugins that need to get run-time information that might
change in between app launches (i.e. installed codec lists), and plugins that check for hardware and need to be able to
fail. So we give your plugin control final say over whether or not it is reloaded each time.

By default, importers, recorders, and exporters are not cached. Exporters can be cached by setting exExpor-
terInfoRec.isCacheable to non-zero during exSelStartup. Importers and recorders can be cached by returning
*IsCacheable instead of *NoError (e.g. for importers, imIsCacheable instead of imNoError) on the startup selector.

By default, legacy video filters and device controllers are cached by default. To specify that legacy video filters must
be reloaded each time, rather than cached, Premiere filters should respond to fsCacheOnLoad.

12.2 Resolving Plug-in Loading Problems

There are various tools to help in the development process.

On Windows only, you can force Premiere to reload all the plugins by holding down shift on startup. The plugin cache
on macOS may be deleted manually from the user folder, at ~/Library/Preferences/com.Adobe.Premiere Pro
[version].plist.

For plugin loading issues, you may first check one of the plugin loading logs.

On Windows: [user folder]\AppData\Roaming\Adobe\Premiere Pro\[version number]\Plugin
Loading.log

On macOS, this is: ~/Library/Application Support/Adobe/Premiere Pro/[version number]/Plugin
Loading.log

Your plugin will be listed by path and filename, and the log will contain details on what happened during the plugin load-
ing process. Starting in CC 2017, it now logs any error codes returned from an effect on PF_Cmd_GLOBAL_SETUP.

If the log says a plugin has been marked as Ignore, the most common culprit is a library dependency that could not be
loaded. If your plugin uses some image processing or proprietary code library, is it installed on the system, and in the
right place? On Windows, a tool such as Dependency Walker (depends.exe) is helpful to check a plugin’s dependencies.

39

Premiere Pro C++ SDK Guide, Release 24.0

12.3 Library Linkage

On Windows, we strongly recommend dynamically linking to libraries, rather than static linking. In Visual Studio, the
runtime library linkage setting is in C/C++ > Code Generation > Runtime Library.

We ask developers to compile with the /MD flag (or /MDd for debug builds), and not with the /MT flag.

Failure to do so can contribute to the problem where the Premiere Pro process can run out of fiber-local storage slots,
and subsequent plugins fail to load.

12.4 No Shortcuts

The Premiere Pro plugin loader does not follow Windows shortcuts. Although it does follow macOS symbolic links,
we recommend against using symbolic links in the plugins folder, since the plugin loader checks the timestamp of the
symbolic link rather than the timestamp of the plugin pointed to.

Explanation: If you use a symbolic link and the plugin fails to load once (for example, if the plugin pointed to isn’t
there) it will be marked to ignore when Premiere launches. Even if the plugin is restored to the proper location, the
plugin loader will check the modification time of

the symbolic link, rather than the plugin pointed to, and continue to ignore the plugin until the modification date of the
symbolic link is updated. So plugins should be placed directly in a plugins folder or subfolder.

40 Chapter 12. Load Em Up

CHAPTER

THIRTEEN

PLUG IN INSTALLATION

Plug-ins must have an installer. This simplifies installation by the user, provides more compact distribution, and ensures
all the pieces are installed correctly.

Create a container folder for your plug-in(s) to minimize user confusion.

Don’t unintentionally overwrite existing plugins, or replace newer versions.

The installer should find the default installation directories as described below.

It is also appreciated when an installer allows the user to specify an alternate directory.

Plugins should be installed in the common plugin location.

Supported Premiere and After Effects plugins installed here will be loaded by Premiere Pro, After Effects, Audition,
and Media Encoder.

Other plugin types, such as QuickTime and VfW codecs should be installed at the operating system level.

13.1 Windows

As of Premiere Pro version 22.0, the \Plug-ins directories have been renamed \Plugins, to better coincide with
Apple’s Human Interface Guidelines. Premiere Pro will continue to attempt to load plugins from \Plug-Ins directories
as well, for the foreseeable future. We will continue to specify

Starting in CC, each version of Premiere Pro will create a unique registry key that provide locations of folders of interest
for third-party installations for that version.

For example, here are the registry values for CC 2015.3:

Key: HKEY_LOCAL_MACHINE/Software/Adobe/Premiere Pro/10.0/

Value name: CommonPluginInstallPath

Value data: C:\Program Files\Adobe\Common\Plugins\7.0\MediaCore\\ (or whatever the proper MediaCore
plugins folder is; note that this is the same as what the After Effects installer provides for a corresponding registry key)

Starting in CC 2015.3, control surface plugins should be installed here:

/Library/Application Support/Adobe/Common/Plug-ins/ControlSurface/

For sequence presets:

Value name: SequencePresetsPath

Value data: [Adobe Premiere Pro installation path]\Settings\SequencePresets\

For sequence preview presets:

41

Premiere Pro C++ SDK Guide, Release 24.0

Value name: SequencePreviewPresetsPath

Value data: [Adobe Premiere Pro installation path]\Settings\EncoderPresets\SequencePreview\

For exporter presets:

Value name: CommonExporterPresetsPath

Value data: [User folder]AppDataRoamingAdobeCommonAME7.0Presets\

Effects presets:

Value name: PluginInstallPath

Value data: [Adobe Premiere Pro installation path]\Adobe Premiere Pro\Plugins\Common

Third-party installers can start from this path, and then modify the string to build the path to the language-specific
effect presets.

Prior to CC, the only path given in the registry was the common plug-in path for the most recently installed version
of Premiere Pro:

HKEY_LOCAL_MACHINE/Software/Adobe/Premiere Pro/CurrentVersion

Value name: Plug-InsDir

Value data: REG_SZ containing the full path of the plugin folder.

As an example: C:\Program Files\Adobe\Common\Plugins\7.0\MediaCore\

The best way to locate other preset folders was to start from the root path for Premiere Pro in the registry at

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\\ Adobe Premiere
Pro.exe.

Then, just add the proper subdirectories as described in the macOS section.

13.2 macOS

Starting in Premiere Pro version 22.0, The common plugin location is:

/Library/Application Support/Adobe/Common/Plugins/[version]/MediaCore/

Starting in CC 2015.3, control surface plugins should be installed here:

/Library/Application Support/Adobe/Common/Plugins/ControlSurface/

Previously, starting in CC 2015, Premiere Pro provided installer hints for Mac. You’ll find com.Adobe.Premiere
Pro.paths.plist at /Library/Preferences, which contains hints for your Mac installer to know where to install
plugins, and is similar to the registry entries we have been providing on Win.

The common plugin location was at:

/Library/Application Support/Adobe/Common/Plug-ins/[version]/MediaCore/

Starting in CC 2015.3, control surface plugins should be installed here:

/Library/Application Support/Adobe/Common/Plug-ins/ControlSurface/

Following OS X Code Signing guidelines, plugins should be installed in this separate shared location rather than in the
application bundle.

For sequence presets:

42 Chapter 13. Plug In Installation

Premiere Pro C++ SDK Guide, Release 24.0

/Settings/SequencePresets/[Your specific folder]/

Sequence preview presets:

/Settings/EncoderPresets/SequencePreview/[Your editing mode GUID]/

Encoder presets:

/MediaIO/systempresets/[Your exporter folder]/

Effects presets:

/Plugins/[language subdirectory]/Effect Presets/ (see Localization for the list of language codes)

Editing modes:

/Settings/Editing Modes/

13.3 Plugin Naming Conventions

On Windows, Premiere Pro plugins must have the file extension “.prm”. On macOS, they have the file extension
“.bundle”. Other supported plug-in standards use their conventional file extensions: “.aex” for After Effects plugins,
“.dll” for VST plugins.

While it is not required for your plugin to load, naming your plugins using the plugin type as a prefix (e.g. ImporterSDK,
FilterSDK, etc.) will help reduce user confusion.

13.4 Plugin Blocklisting (formerly Blacklisting)

Specific plugins can be blocked from being loaded by MediaCore in specific applications, using blocklists. Note that
this does not work for After Effects plugins loaded by AE, although it does work for AE plugins loaded in Premiere
Pro.

In the plugins folder, look for the appropriate blacklist file, and append the the filename of the plugin to the file (e.g.
BadPlugin, not BadPlugin.prm). If the file doesn’t exist, create it first. “Blocklist.txt” contains names of plugins
blacklisted from all apps. Plugins can be blocked from loading in specific apps by including them in “Blocklist Adobe
Premiere Pro.txt”, or “Blocklist After Effects.txt”, etc.

13.5 Creating Sequence Presets

Not to be confused with encoder presets or sequence preview encoder presets, sequence presets are the successor to
project presets. They contain the video, audio, timecode, and track layout information used when creating a new
sequence.

If you wish to add Sequence Presets for the New Sequence dialog, save the settings with a descriptive name and
comment. Emulate our settings files. Install the presets as described in this section.

13.3. Plugin Naming Conventions 43

Premiere Pro C++ SDK Guide, Release 24.0

13.6 Application-level Preferences

For Windows 7 restricted user accounts, the only place that code has guaranteed write access to a folder is inside the
user documents folder and its subfolders.

..Users[user name]AppDataRoamingAdobePremiere Pro[version]\

This means that you cannot save data or documents in the application folder. There is currently no plugin API for
storing preferences in the application prefs folder. Plugins can create their own preferences file in the user’s Premiere
prefs directory like so:

HRESULT herr = SHGetKnownFolderPath(FOLDERID_RoamingAppData, 0, NULL, preferencesPath);
strcat(preferencesPath, "\\Adobe\\Premiere Pro\\[version]\\MyPlugin.preferences");

On MacOS: NSSearchPathForDirectoriesInDomains(NSApplicationSupportDirector y,
NSLocalDomainMask,...)

This should get you started getting the Application Support folder which you can add onto to create something like:

/Library/Application Support/Adobe/Premiere Pro/[version]/ MyPlugin.preferences

13.7 Dog Ears

Premiere Pro’s built-in player has a mode to display statistics, historically known as “dog ears”, which can be useful
in debugging and tuning performance of importers, effects, transitions, and transmitters. The statistics include frames
per second, frames dropped during playback, pixel format rendered, render size, and field type being rendered.

You can bring up the debug console in Premiere Pro. You can do this via Ctrl/Cmd-F12. To enable the dog ears, type
this:

debug.set EnableDogEars=true

to disable, use this:

debug.set EnableDogEars=false

If the enter keystroke seems to go to the wrong panel, this is an intermittent panel focus problem. Click the Tools or
Info panel before typing in the Console panel, and the enter key will be processed properly.

Once enabled, the player displays the statistics as black text on a partially transparent background. This allows you to
still see the underlying video (to some extent) and yet also read the text. When you turn off dog ears, the setting may
not take effect until you switch or reopen your current sequence.

Note if you are developing a transmitter, displaying dog ears will result in duplicate calls to PushVideo for the same
frame. This happens because the player routinely updates the dog ears on a timer even when the frame hasn’t changed
for updated stats. As of CS6, this triggers a PushVideo to active transmitters as a side effect.

44 Chapter 13. Plug In Installation

CHAPTER

FOURTEEN

LOCALIZATION

The language used by Premiere Pro is decided by the user during installation.

Plug-ins can determine this setting from the following locations:

On Windows, in the registry at HKEY_CURRENT_USER\Software\Adobe\Premiere Pro\[version], in a key
named "Language".

On macOS, at ~/Library/Preferences/com.Adobe.Premiere Pro.[version].plist, at Root > Language.

The string will be set to one of the values below by Premiere Pro at startup.

Language String
English en_US
French fr_FR
German de_DE
Italian it_IT
Japanese ja_JP
Spanish es_ES
Korean ko_KR
Chinese (new in CC) zh_CN
Russian (new in CC 2014) ru_RU
Brazilian Portugese (new in CC 2014) pt_BR

Changing the string will not change the language Premiere Pro runs in, unless you override the application language
by placing a file in the following location:

Windows: [App installation folder]\lang-override.txt

macOS: [App Installation folder]/[Premiere Pro application package]/Contents/
lang-override.txt

45

Premiere Pro C++ SDK Guide, Release 24.0

46 Chapter 14. Localization

CHAPTER

FIFTEEN

BEST PRACTICES

When a plugin receives a selector it doesn’t recognize, it should always return the code specific to the plugin type that
means the selector is not supported (i.e. imUnsupported, rmUnsupported, etc).

In this way, new selectors can be added to the API and legacy plugins will automatically answer whether or not they
support it.

15.1 Structure Alignment

All the sample projects include PrSDKTypes.h.

This header sets the proper (single-byte) structure alignment and specifies the necessary (C-style) external linkage.

47

Premiere Pro C++ SDK Guide, Release 24.0

48 Chapter 15. Best Practices

CHAPTER

SIXTEEN

RESOURCES

There are two types of special resources that are specific to Premiere plugins: the PiPL and the IMPT.

This chapter describes these resources, and how certain plugin types use them.

49

Premiere Pro C++ SDK Guide, Release 24.0

50 Chapter 16. Resources

CHAPTER

SEVENTEEN

PLUG-IN PROPERTY LISTS (PIPL) RESOURCE

For many plugin types, Premiere loads a PiPL (Plug-in Property List) resource. The PiPL is described in a file with a
“.r” extension.

The complete PiPL syntax is described in PiPL.r.

You’ll notice that PiPLs are really old. A vestige of 68k macOS programming, they spread to Windows.

However, if you develop from the sample projects, you shouldn’t have to do anything to get them to build properly for
Latin languages.

17.1 Which Types of Plugins Need PiPLs?

Exporters, players, and recorders do not need PiPLs.

Standard importers do not need PiPLs. Synthetic and custom importers use a basic PiPL to specify their name, and the
match name that Premiere uses to identify them. The name appears in the File > New menu.

Device controllers use a basic PiPL to specify their name and the match name that Premiere uses to identify them.

Video filters use an extended PiPL to specify their name, the match name that Premiere uses to identify them, the bin
they go in, how they handle pixel aspect ratio, whether or not they have randomness, and their parameters.

For more information on the ANIM_FilterInfo and ANIM_ParamAtom, see the resources section in Video Filters.

17.2 A Basic PiPL Example

#define plugInName "SDK Custom Import"
#define plugInMatchName "SDK Custom Import"

resource 'PiPL' (16000) {
{

// The plugin type
Kind {PrImporter},

// The name as it will appear in a Premiere menu, this can be localized
Name {plugInName},

(continues on next page)

51

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

// The internal name of this plugin - do not localize this. This is used for both␣
→˓Premiere and After Effects plugins.
AE_Effect_Match_Name {plugInMatchName}

// Transitions and video filters define more PiPL attributes here
}

};

17.3 How PiPLs Are Processed By Resource Compilers

On macOS, .r files are processed natively by Xcode, as a Build Phase of type Build Carbon Resources. This step is
already set for the sample projects.

On Windows, .r files are processed with CnvtPiPL.exe, which creates an .rcp file based upon custom build steps in the
project. The .rcp file is then included in the .rc file along with any other resources the plugin uses. These custom build
steps are already in place in the sample projects.

To view them, open up the sample project in .NET. In the Solution Explorer, right-click the .r file and choose Properties.
In the dialog, choose the Custom Build Step folder. The Command

Line contains the script for executing the CnvtPiPL.exe. Unless you are using a different compiler than the support
compiler, or adding support for Asian languages, you should not need to modify the custom build steps. This script
may also be found as a text file in the SDK at \Examples\ ResourcesWinCustom Build Steps.txt. This text file also
describes the additional switches used for Asian languages.

52 Chapter 17. Plug-In Property Lists (PiPL) Resource

CHAPTER

EIGHTEEN

IMPT RESOURCE

Premiere Pro looks for an IMPT resource to identify a plugin as an importer.

Before Premiere Pro 1.0, the IMPT resource was also used to declare the file extension supported by an importer.

Since file extensions are now declared during imGetIndFormat, the drawtype four character code in the IMPT resource
is no longer used by Premiere Pro.

However, a unique drawtype fourcc is needed for the importer to function properly in After Effects on macOS.

Do not use 0x4D4F6F76. This is already reserved by After Effects.

1000 IMPT DISCARDABLE BEGIN
0x12345678 // Put your own unique hexadecimal code here
END

53

Premiere Pro C++ SDK Guide, Release 24.0

54 Chapter 18. IMPT Resource

CHAPTER

NINETEEN

UNIVERSALS

This chapter covers topics that are common to more than one type of Premiere plugin. We start by discussing fun-
damental concepts and common data structures. The rest of the chapter discusses the various function suites that are
available to plugins.

55

Premiere Pro C++ SDK Guide, Release 24.0

56 Chapter 19. Universals

CHAPTER

TWENTY

TIME

There are two different representations of time: scale over sampleSize, and ticks.

20.1 scale over sampleSize

The first representation of time uses value/scale/sampleSize components, either separated, or combined in a
TDB_TimeRecord structure. scale over sampleSize defines the timebase. For example, to represent the NTSC stan-
dard of 29.97 frames per second, scale / sampleSize = 30000 / 1001. To represent the PAL standard of 25 frames
per second, 25 / 1.

To represent the 24p standard of 23.976, 23976 / 1000, or 24000 / 1001. To represent most other timebases, use
sampleSize = 1, and scale is the frame rate (e.g. 15, 24, 30 fps, etc). Another way of thinking about scale and
sampleSize is that sampleSize is the duration of a frame of video, and scale is that duration of a second of video.

value is the time in the timebase given by scale over sampleSize. So, for example, 30 frames with a sampleSize of
1001 have a value of 30030.

To convert value to seconds, divide by scale. To convert value to frames, divide by sampleSize.

Sometimes, as when handling audio-only media, sampleSize refers to a sample of audio, and sampleSize = 1. In
this case, scale is the audio sampling rate (22050, 32000, 44100, 48000 Hz, etc).

20.2 PrTime

Most newer areas of the API use a tick-based time value that is stored in a signed 64-bit integer. Variables that use this
new format are of type PrTime. When a frame rate is represented as a PrTime, the frame rate is the number of ticks in
a frame duration.

The current number of ticks per second must be retrieved using the callback in the Time Suite. This rate is guaranteed
to be constant for the duration of the application’s run-time.

57

Premiere Pro C++ SDK Guide, Release 24.0

58 Chapter 20. Time

CHAPTER

TWENTYONE

VIDEO FRAMES

Premiere stores each video frame in a PPix structure. A PPixHand is a handle to a PPix. This structure should not be
accessed directly, but manipulated using various suites such as the PPix Suite, PPix 2 Suite, PPix Creator Suite, and
PPix Creator 2 Suite.

Far from being just a boring buffer of RGB data, PPixes can contain a significant amount of information about a
video frame, including: rectangle bounds (width, height), pixel aspect ratio, pixel format, field dominance, alpha
interpretation, color space, gamma encoding, and more.

In the pixel buffer itself, there may be padding between neighboring horizontal rows of pixels. So when iterating
through the pixels in the buffer, don’t assume that the first pixel on the next line is stored immediately after the last pixel
on the current line. Honor the rowbytes, which is a measure of the size in bytes of a row of pixels, including any extra
padding.

Frames are guaranteed to be 16-byte aligned.

59

Premiere Pro C++ SDK Guide, Release 24.0

60 Chapter 21. Video Frames

CHAPTER

TWENTYTWO

PIXEL FORMATS AND COLOR SPACES

As of CC, Premiere supports 69 different pixel formats, not including raw and custom formats.

Why so many? Each pixel format has it’s unique advantages and disadvantages. 8-bit formats are compact, but lack
quality. 32-bit ones are more accurate, but overkill in some situations.

Compressed formats are great for storing raw frames, but bad for effects processing. And so on. . . In summary, choose
wisely!

22.1 What Format Should I Use?

Starting in CS4, plugins no longer need to support 8-bit BGRA at a minimum. If required, Premiere can make inter-
mediate format conversions in the render pipeline, although these intermediate conversions will be avoided if possible.

Previously in CS3 and earlier, all plugins except importers needed to support 8-bit per channel BGRA, even if they
supported other formats.

When choosing which pixel formats to support, there are different factors to consider, depending on the plugin type.

22.1.1 Importers

Importers typically should provide frames in a format closest to the source format.

If needed, Premiere can convert any compressed format to a 8-bit or 32-bit uncompressed format. Keeping the format
compressed as long as possible as it passes through the render pipeline will save memory and bandwidth.

Starting in Premiere Pro CC 2014, importers can now choose the format they are rendering in. This allows importers
to change pixel formats and quality based on criteria like enabled hardware and other source settings, such as HDR. To
handle the negotiation, implement imSelectClipFrameDescriptor.

22.1.2 Effects

Effects should support the uncompressed format(s) that works best with the effect’s pixel processing algorithm.

If the algorithm is based on RGB pixel calculations, provide a fast render path using 8-bit BGRA, and optionally a
high-quality render path using 32-bit BGRA. If the algorithm is Y’UV-based, use the VUYA pixel formats.

61

Premiere Pro C++ SDK Guide, Release 24.0

22.1.3 Exporters and Transmitters

Exporters and transmitters should request frames in a format closest to the output format. New in CS5, PrPixelFor-
mat_Any can be used in exporter render requests.

Any render function that takes a list of pixel formats can now be called with just two formats - the desired 4:4:4:4 pixel
format, and PrPixelFormat_Any. This allows the host to avoid frame conversions and decompressions in many very
common cases. The best part is that the plugin doesn’t need to

understand all the possible pixel formats to make use of this. It can use the Image Processing Suite to copy/convert
from any a PPix of any format to a separate memory buffer, which is a copy that would likely need to be done anyway.

After the request is made, Premiere analyzes the preferred format of all importers and effects that are used to produce
a single rendered frame, as well as the list of requested formats, and chooses the best format to use on a per-segment
basis.

If the requestor supports more than one format, and the importers and effects used for various clips in the sequence
support different formats, the render may use different formats for each segment.

Premiere Pro’s built-in Rec. 601 to 709 color space conversion can be slow. So if the majority of the sources and effects
use the Rec 601 color space, and if the exporter or transmitter can handle the 601 to 709 conversion quickly on its own,
it may be faster to do the color space conversion in the exporter or transmitter.

22.1.4 Other Considerations

For high-bit depth support, the 32f formats are the recommended route, rather than the 16u formats. For example, an
exporter that supports 10-bit Y’UV should ask for frames in 32f Y’UV format, and then convert the 32f to 10u.

The ARGB formats can be natively used in the After Effects render pipeline, and are used by After Effects effect plugins
that do not specifically support any other pixel format. However, in Premiere Pro, these ARGB formats will require
byte-swapping, and shouldn’t be used.

22.2 Byte Order

BGRA, ARGB, and VUYA are written in order of increasing memory address from left to right. Uncompressed formats
have a lower-left origin, meaning the first pixel in the buffer describes the pixel in the lower-left corner of the image.
Compressed formats have format-specific origins. Use calls in the Image Processing Suite to get details on any format.

8-bit and 16-bit BGRA formats do not contain super whites or super blacks.

The 16-bit formats use channels that go from black at 0 to white at 32768, like After Effects and Photoshop 16-bit
formats.

22.2.1 Unpacked, Uncompressed

PrPixelFormat Bits / Channel Format / FourCC Additional Details
BGRA_4444_8u 8 RGB
VUYA_4444_8u 8 Y’UV
VUYA_4444_8u_709 8 Y’UV Rec. 709 color space. New in Premiere Pro 4.1.
BGRA_4444_16u 16 RGB
BGRA_4444_32f 32 RGB
VUYA_4444_32f 32 Y’UV
VUYA_4444_32f_709 32 Y’UV Rec. 709 color space. New in Premiere Pro 4.1.

62 Chapter 22. Pixel Formats And Color Spaces

Premiere Pro C++ SDK Guide, Release 24.0

22.2.2 Unpacked, Uncompressed, native After Effects support only

PrPixelFor-
mat

Bits /
Channel

Format /
FourCC

Additional Details

ARGB_4444_8u 8 RGB For native After Effects support. For native Premiere Pro sup-
port, use BGRA.

ARGB_4444_16u16 RGB
ARGB_4444_32f32 RGB

22.2.3 Unpacked, Uncompressed, with implicit alpha

PrPix-
elFor-
mat

Bits /
Chan-
nel

For-
mat /
FourCC

Additional Details

BGRX_4444_8u8 RGB Implicitly opaque alpha channel. The actual data may be left filled with garbage,
which allows optimized processing by both the plugin and host, with the understand-
ing the the alpha channel is opaque. New in Premiere Pro CS5.

VUYX_4444_8u8 Y’UV
VUYX_4444_8u_7098 Y’UV
XRGB_4444_8u8 RGB
BGRX_4444_16u16 RGB
XRGB_4444_16u16 RGB
BGRX_4444_32f32 RGB
VUYX_4444_32f32 Y’UV
VUYX_4444_32f_70932 Y’UV
XRGB_4444_32f32 RGB
BGRP_4444_8u8 RGB Premultiplied alpha. New in Premiere Pro CS5.
VUYP_4444_8u8 Y’UV
VUYP_4444_8u_7098 Y’UV
PRGB_4444_8u8 RGB
BGRP_4444_16u16 RGB
PRGB_4444_16u16 RGB
BGRP_4444_32f32 RGB
VUYP_4444_32f32 Y’UV
VUYP_4444_32f_70932 Y’UV
PRGB_4444_32f32 RGB

22.2.4 Linear RGB

PrPixelFormat Bits /
Channel

Format /
FourCC

Additional Details

BGRA_4444_32f_Linear32 RGB These RGB formats have a gamma of 1, rather than the standard
2.2. New in Premiere Pro CS5.

BGRP_4444_32f_Linear32 RGB
BGRX_4444_32f_Linear32 RGB
ARGB_4444_32f_Linear32 RGB
PRGB_4444_32f_Linear32 RGB
XRGB_4444_32f_Linear32 RGB

22.2. Byte Order 63

Premiere Pro C++ SDK Guide, Release 24.0

22.2.5 Packed, Uncompressed formats

PrPixelFormat Bits / Chan-
nel

Format /
FourCC

Additional Details

RGB_444_10u New in Premiere Pro CC. Full range 10-bit 444 RGB
little-endian

YUYV_422_8u_601 8 ‘YUY2’ New in Premiere Pro CS4.
YUYV_422_8u_709 8 ‘YUY2’ Rec. 709 color space. New in Premiere Pro CS4.
UYVY_422_8u_601 8 ‘UYVY’ New in Premiere Pro CS4.
UYVY_422_8u_709 8 ‘UYVY’ Rec. 709 color space. New in Premiere Pro CS4.
V210_422_10u_601 10 ‘v210’ New in Premiere Pro CS4.
V210_422_10u_709 10 ‘v210’ Rec. 709 color space. New in Premiere Pro CS4.
UYVY_422_32f_60132 ‘UYVY’ New in Premiere Pro CC.
UYVY_422_32f_70932 ‘UYVY’ New in Premiere Pro CC.

64 Chapter 22. Pixel Formats And Color Spaces

Premiere Pro C++ SDK Guide, Release 24.0

22.2. Byte Order 65

Premiere Pro C++ SDK Guide, Release 24.0

22.2.6 Compressed Y’UV

PrPixelFormat Bits
/
Chan-
nel

For-
mat /
FourCC

Additional Details

NTSCDV25 8 DV25 /
‘dvsd’

PALDV25 8 DV25 /
‘dvsd’

NTSCDV50 8 DV50 /
‘dv50’

PALDV50 8 DV50 /
‘dv50’

NTSCDV100_720p 8 DV100
720p /
‘dvh1’

PALDV100_720p 8 DV100
720p /
‘dvh1’

NTSCDV100_1080i 8 DV100
1080i /
‘dvh1’

PALDV100_1080i 8 DV100
1080i /
‘dvh1’

YUV_420_MPEG2_FRAME_PICTURE_PLANAR_8u_6018 Y’UV
4:2:0 /
‘YV12’

Progressive Rec. 601 color space

YUV_420_MPEG2_FIELD_PICTURE_PLANAR_8u_6018 Y’UV
4:2:0 /
‘YV12’

Interlaced Rec. 601 color space

YUV_420_MPEG2_FRAME_PICTURE_PLANAR_8u_601_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS5.5. Progressive Rec. 601 color space,
full range Y’UV

YUV_420_MPEG2_FIELD_PICTURE_PLANAR_8u_601_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS5.5. Interlaced Rec. 601 color space,
full range Y’UV

YUV_420_MPEG2_FRAME_PICTURE_PLANAR_8u_7098 Y’UV
4:2:0 /
‘YV12’

Progressive Rec. 709 color space

YUV_420_MPEG2_FIELD_PICTURE_PLANAR_8u_7098 Y’UV
4:2:0 /
‘YV12’

Interlaced Rec. 709 color space

YUV_420_MPEG2_FRAME_PICTURE_PLANAR_8u_709_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Progressive Rec. 709 color space,
full range Y’UV. Matricies scaled from 709 by each compo-
nent’s excursion (Y is scaled by 219/255 and UV scaled by
224/256)

YUV_420_MPEG2_FIELD_PICTURE_PLANAR_8u_709_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Interlaced Rec. 709 color space, full
range Y’UV

YUV_420_MPEG4_FRAME_PICTURE_PLANAR_8u_6018 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Progressive Rec. 601 color space

YUV_420_MPEG4_FIELD_PICTURE_PLANAR_8u_6018 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Interlaced Rec. 601 color space

YUV_420_MPEG4_FRAME_PICTURE_PLANAR_8u_601_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Progressive Rec. 601 color space,
full range Y’UV

YUV_420_MPEG4_FIELD_PICTURE_PLANAR_8u_601_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Interlaced Rec. 601 color space, full
range Y’UV

YUV_420_MPEG4_FRAME_PICTURE_PLANAR_8u_7098 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Progressive Rec. 709 color space

YUV_420_MPEG4_FIELD_PICTURE_PLANAR_8u_7098 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Interlaced Rec. 709 color space

YUV_420_MPEG4_FRAME_PICTURE_PLANAR_8u_709_FullRange8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Progressive Rec. 709 color space,
full range Y’UV. Matricies scaled from 709 by each compo-
nent’s excursion (Y is scaled by 219/255 and UV scaled by
224/256)

PrPixelFor-
mat_YUV_420_MPEG4_FIELD_PICTURE_PLANAR_8u_709_FullRange

8 Y’UV
4:2:0 /
‘YV12’

New in Premiere Pro CS6. Interlaced Rec. 709 color space, full
range Y’UV

66 Chapter 22. Pixel Formats And Color Spaces

Premiere Pro C++ SDK Guide, Release 24.0

22.2.7 Miscellaneous

PrPixelFormat Bits / Channel Format / FourCC Additional Details
Raw ? ? Raw, opaque data, with no rowbytes or height

22.3 Custom Pixel Formats

New in CS4, custom pixel formats are supported. Plugins can define a pixel format which can pass through
various aspects of our pipeline, but remain completely opaque to the built-in renderers. Use the macro
MAKE_THIRD_PARTY_CUSTOM_PIXEL_FORMAT_FOURCC in the Pixel Format Suite. Please use a unique
name to avoid collisions.

The format doesn’t need to be registered in any sense. They can just be used in the same way the current pixel formats
are used, though in many cases they will be ignored.

The first place the new pixel formats can appear in the render pipeline is at the importer level. Importers can advertise
the availability of these pixel formats during imGetIndPixelFormat, just as they would for any other format. Note that
importers must also support a non-custom pixel format, for the case where the built-in renderer is used, which would
not be prepared to handle an opaque pixel format added by a third-party.

In the importer, use the new CreateCustomPPix call in the PPix Creator 2 Suite, and specify a custom pixel format and
a memory buffer size, and the call will pass back a PPix of the requested format. These PPixes can then be returned
from an importer, like any other. The memory for the PPix will be allocated by MediaCore, and must be a flat data
structure as they will need to be copied between processes.

However, because the data itself is completely opaque, it can easily be a reference to another pixel buffer, as long as the
reference can be copied. For example, the buffer could be a constant 16 bytes, containing a GUID which can be used
to access a memory buffer by name in another process.

To query for available custom pixel formats from the player, use the GetNumCustomPixelFormats and GetCustom-
PixelFormat calls in the Clip Render Suite. The custom pixel formats will not returned by the regular calls to get the
supported frame formats, mostly to prevent them from being used.

The other Clip Render Suite functions will accept requests for custom pixel formats and will return these custom PPixes
like any others.

With the Clip Render Suite, a third-party player can directly access these custom PPixes from a matched importer.

22.3.1 Smart Rendering

Smart rendering involves passing compressed frames from the importer to the exporter, to bypass any unnecessary
decompression and recompression, which reduces quality and performance.

The way to implement this is by passing custom PPixes between an importer, exporter, and usually a renderer.

In the rare case of exporting a single clip, using the Clip Render Suite in the exporter to request custom PPixes from
the importer is sufficient. But in the more common case of exporting a sequence, a renderer that supports the custom
pixel format is required.

When an exporter running in Media Encoder parses the segments in the sequence, it only has a very high-level view.
It sees the entire sequence as a single clip (which is actually a temporary project file that has been opened using a
Dynamic Link to the PProHeadless process), and it sees any optional cropping or filters as applied effects.

22.3. Custom Pixel Formats 67

Premiere Pro C++ SDK Guide, Release 24.0

So when the exporter parses that simple, high-level sequence, if there are no effects, it should use the MediaNode’s
ClipID with the Clip Render Suite to get frames directly from the PProHeadless process. In the PProHeadless process,
the renderer can step in and parse the real sequence in all its glory.

It can use the Clip Render Suite to get the frames in the custom pixel format directly from the importer, and then set the
custom PPix as the render result. This custom PPix then is available to the exporter, in a pristine, compressed PPix.

68 Chapter 22. Pixel Formats And Color Spaces

CHAPTER

TWENTYTHREE

PIXEL ASPECT RATIO

Pixel Aspect Ratio (PAR) is usually represented as a rational number, with a numerator and a denominator. Note that
several PAR values were changed in CS4 to match broadcast standards. Here are some examples of pixel aspect ratios:

• NTSC DV 0.9091 PAR is (10, 11)

• NTSC DV Widescreen 1.2121 PAR is (40, 33)

• PAL DV 1.0940 PAR is (768, 702)

• PAL DV 1.4587 PAR is (1024, 702)

• Square 1.0 PAR is (1,1)

In certain legacy structures, PAR is represented as a single 32-bit integer, such as in recCapInfoRec.
pixelAspectRatio.

This uses a representation where the numerator is bit-shifted 16 to the left, and OR’d with the denominator. For example
NTSC DV 0.9091 PAR is (10 << 16) \| 11.

69

Premiere Pro C++ SDK Guide, Release 24.0

70 Chapter 23. Pixel Aspect Ratio

CHAPTER

TWENTYFOUR

FIELDS

There are different constants defined for fields. These constants are now largely interchangable in CS4, since the
conflicting constants for the old compiler API have been removed.

Exporters, Players, Video Segment Suite, etc Recorders
prFieldsNone kMALFieldsNone
prFieldsUpperFirst kMALFieldsUpperFirst
prFieldsLowerFirst kMALFieldsLowerFirst
prFieldsUnknown kMALFieldsUnknown
prFieldsAny kMALFieldsInvalid
prFieldsInvalid

71

Premiere Pro C++ SDK Guide, Release 24.0

72 Chapter 24. Fields

CHAPTER

TWENTYFIVE

AUDIO

25.1 32-bit Float, Uninterleaved Format

All audio calls to and from Premiere use arrays of buffers of 32-bit floats to pass audio. Audio is not interleaved, rather
separate channels are stored in separate buffers. So the structure for stereo audio looks like this:

float* audio[2];

where audio[0] is the address of a buffer N samples long, and audio[1] is the address of a second buffer N samples
long. audio[0] contains the left channel, and audio[1] contains the right channel. N is the number of sample frames in
the buffer.

Since Premiere uses 32-bit floats for each audio sample, it can represent values above 0 dB. 0 dB corresponds to +/-
1.0 in floating point. A floating point sample can be converted to a 16-bit short integer by multiplying by 32767.0 and
casting the result to a short.

E.g.:

sample16bit[n] = (short int) (sample32bit[n] * 32767.0)

The plugin is responsible for converting to and from the 32-bit uninterleaved format when reading a file that uses a
different format. There are calls to convert between formats in the Audio Suite. For symmetry in the int <–> float
conversions, we recommend you use the utility functions provided.

25.2 Audio Sample Types

Since 32-bit floats are the only audio format ever passed, there is no option of sample type or bit depth. However, file
formats do use a variety of sample types and bit depths, so AudioSampleTypes define a variety of possible formats.

These formats are used to set members in structures passed to Premiere to define the user interface, and do not affect
the format of the audio passed to and from Premiere.

73

Premiere Pro C++ SDK Guide, Release 24.0

PrAudioSampleType Description
kPrAudioSampleType_8BitInt 8-bit integer
kPrAudioSampleType_8BitTwosInt 8-bit integer, two’s complement
kPrAudioSampleType_16BitInt 16-bit integer
kPrAudioSampleType_24BitInt 24-bit integer
kPrAudioSampleType_32BitInt 32-bit integer
kPrAudioSampleType_32BitFloat 32-bit floating point
kPrAudioSampleType_64BitFloat 64-bit floating point
kPrAudioSampleType_16BitIntBigEndian 16-bit integer, big endian
kPrAudioSampleType_24BitIntBigEndian 24-bit integer, big endian
kPrAudioSampleType_32BitIntBigEndian 32-bit integer, big endian
kPrAudioSampleType_32BitFloatBigEndian 32-bit floating point, big endian
kPrAudioSampleType_Compressed Any non-PCM format
kPrAudioSampleType_Packed Any PCM format with mixed sample types
kPrAudioSampleType_Other A sample type not in this list
kPrAudioSampleType_Any Any available sample type (used by exporters)

25.3 Audio Sample Frames

A sample frame is a unit of measurement for audio. One audio sample frame describes all channels of one sample of
audio. Each sample is a 32-bit float. Thus, the storage requirement of an audio sample frame in bytes is equal to 4 *
number of channels.

25.4 Audio Sample Rate

PrAudioSample is a prInt64

25.5 Audio Channel Types

Premiere currently supports four different audio channel types: mono, stereo, 5.1, and max channel.

Greater than 5.1 channel support was originally added in Premiere Pro 4.0.1, with partial support for a 16 channel
master audio track, only for importing OMFs and playing out to hardware.

In CS6, 16-channel audio export was added.

Starting in CC, the audio channel support is increased to 32 channels.

74 Chapter 25. Audio

Premiere Pro C++ SDK Guide, Release 24.0

PrAudioChannelType Description
kPrAudioChannelType_Mono Mono
kPrAudioChannelType_Stereo Stereo. The order of the stereo channels is:

• kPrAudioChannelLabel_FrontLeft,
• kPrAudioChannelLabel_FrontRight.

kPrAudioChannelType_51 5.1 audio.
The order of the 5.1 channels is:

• kPrAudioChannelLabel_FrontLeft,
• kPrAudioChannelLabel_FrontRight,
• kPrAudioChannelLabel_BackLeft,
• kPrAudioChannelLabel_BackRight,
• kPrAudioChannelLabel_FrontCenter,
• kPrAudioChannelLabel_LowFrequency
• kPrAudioChannelLabel_BackLeft
• kPrAudioChannelLabel_BackRight

kPrAudioChannelType_MaxChannel New in CC.
kMaxAudioChannelCount, defined as 32 channels as
of CC.
All channels use kPrAudioChannelLabel_Discrete.

25.5. Audio Channel Types 75

Premiere Pro C++ SDK Guide, Release 24.0

76 Chapter 25. Audio

CHAPTER

TWENTYSIX

MEMORY MANAGEMENT

Premiere Pro has a media cache in which it stores imported frames, intermediate frames (intermediate stages of a
render), fully rendered frames, and audio.

This is sized based on a specific percentage of physical memory, taking into account if multiple Adobe applications are
also running.

Premiere Pro manages this cache itself, so as it adds new items to the cache, it flushes least recently used items.

26.1 What Really is a Memory Problem?

Often, users monitoring memory usage are alarmed when they see memory growing to a specific point during a render
or playback. When the memory doesn’t drop right back down after a render or playback, they might think they have
found a memory leak. However, keeping in mind the function of the Premiere Pro media cache, this behavior is to be
expected.

On the other hand, memory contention between plugins and the rest of Premiere Pro can lead to memory problems.
If a plugin allocates a significant amount of memory and the Premiere Pro media cache has not accounted for it, this
means there is less free memory available after the media cache grows to the predefined size. Even if Premiere Pro
does not completely run out of memory, limited memory can cause memory thrashing as memory is moved around to
make room for video frames, which in turn can cause poor performance.

26.2 Solutions for Memory Contention

The best approach to reduce memory contention is to reduce the memory requirements of each plugin. However, if the
memory requirements of a plugin are significant, it should also use the Memory Manager Suite to report any memory
usage that would not already be accounted for.

Frames allocated using the PPix Creator Suite are accounted for, but any memory allocated using the old PPix and
Memory functions are not automatically accounted for.

77

Premiere Pro C++ SDK Guide, Release 24.0

78 Chapter 26. Memory Management

CHAPTER

TWENTYSEVEN

BASIC TYPES STRUCTURES

These types and structures are defined in PrSDKTypes.h and PrSDKStructs.h, and are used throughout the Premiere
API.

Premiere defines cross-platform types for convenience when developing plugins for both Windows and Mac OS.

79

Premiere Pro C++ SDK Guide, Release 24.0

Name Description
prColor An unsigned 32-bit integer that stores an RGB color.

This type is useful for the 8-bpc colors retrieved by the
color picker in a video effect or transition.
Color channels are stored as BGRA, in order of increas-
ing memory address from left to right.

prWnd A Windows HWND or Mac OS NSView*
prParentWnd A Windows HWND or Mac OS NSWindow*
prOffscreen A Windows HDC
prRect A Windows RECT or Mac OS Rect.

Use the utility function prSetRect to set the dimen-
sions of a prRect struct.
This should be used because Mac OS Rect members
have a different ordering than Windows RECT members.

prFloatRect

typedef struct {
float left;
float top;
float right;
float bottom;

} prFloatRect;

prRgn A Windows HRGN
prPoint, LongPoint

typedef struct {
csSDK_int32 x;
csSDK_int32 y;

} prPoint, LongPoint;

LongPoint is deprecated, but still used for a couple of
Bottleneck callbacks

prFPoint
typedef struct {
double x;
double y;

} prFPoint64;

prPixel (Deprecated)
prPixelAspectRatio (Deprecated)
PPix, *PPixPtr, **PPixHand Holds a video frame or field, and contains related at-

tributes such as pixel aspect ratio and pixel format.
Manipulate PPixs using the PPix Suite, never directly.

TDB_TimeRecord A time database record representing a time value in the
context of a video frame rate.
typedef struct {
TDB_Time value;
TDB_TimeScale scale;
TDB_SampSize sampleSize;

} TDB_TimeRecord;

prBool Can be either kPrTrue or kPrFalse
PrMemoryPtr, *PrMemoryHandle A char*
PrTimelineID, PrClipID A 32-bit signed integer.
prUTF8Char An 8-bit unsigned integer.
PrSDKString An opaque data type that should be accessed using the

new String Suite.
PrParam Used for exporter parameters

struct PrParam
{
PrParamType mType;
union
{
csSDK_int8 mInt8;
csSDK_int16 mInt16;
csSDK_int32 mInt32;
csSDK_int64 mInt64;
float mFloat32;
double mFloat64;
csSDK_uint8 mBool;
prFPoint64 mPoint;
prPluginID mGuid;
PrMemoryPtr mMemoryPtr;

};
};

enum PrParamType
{
kPrParamType_Int8 = 1,
kPrParamType_Int16,
kPrParamType_Int32,
kPrParamType_Int64,
kPrParamType_Float32,
kPrParamType_Float64,
kPrParamType_Bool,
kPrParamType_Point,
kPrParamType_Guid,
kPrParamType_PrMemoryPtr

};

prDateStamp Used in by importers in imFileAttributesRec.
creationDateStamp.

typedef struct
{
csSDK_int32 day;
csSDK_int32 month;
csSDK_int32 year;
csSDK_int32 hours;
csSDK_int32 minutes;
double seconds;

} prDateStamp;

80 Chapter 27. Basic Types Structures

CHAPTER

TWENTYEIGHT

SUITES

There are different sets of function suites available to Premiere plugins. SweetPea Suites are the more modern suites
that have been added for most new functionality. The piSuites are still needed for various functionality that has not all
been superceded by SweetPea Suites.

Whenever possible, use SweetPea Suites.

There are also function suites more specific to certain plugin types. The Bottleneck Functions are useful for transitions
and video filters. Other suites available to only one plugin type are documented in the appropriate chapter for that
plugin type.

81

Premiere Pro C++ SDK Guide, Release 24.0

82 Chapter 28. Suites

CHAPTER

TWENTYNINE

SWEETPEA SUITES

29.1 Overview

Suites common to more than one plugin type are documented in this chapter below.

Suites that are only used by one plugin type are documented in the chapter on that plugin type.

Below is a table of all suites available in Premiere Pro:

Suite Name Relevant to Plug-in Type
Accelerated Render Invocation Suite Exporters
App Info Suite All
Application Settings Suite All
Async File Reader Suite Importers
Async Operation Suite All
Audio Suite Importers, Exporters
Captioning Suite Device Controllers, Exporters, Transmitters
Clip Render Suite Exporters
Deferred Processing Suite Importers
Error Suite All except Exporters starting in CS6
Export File Suite Exporters
Export Info Suite Exporters
Export Param Suite Exporters
Export Progress Suite Exporters
Export Standard Param Suite Exporters
Exporter Utility Suite Exporters
File Registration Suite Importers, Transitions, Video Filters
Flash Cue Marker Data Suite Exporters
GPU Device Suite GPU Effects and Transitions
Image Processing Suite All
Importer File Manager Suite Importers
Legacy Callback Suites All
Marker Suite Exporters
Media Accelerator Suite Importers
Memory Manager Suite All
Palette Suite Exporters
Pixel Format Suite All
Playmod Audio Suite Transmitters
Playmod Device Control Suite None (Deprecated)
Playmod Overlay Suite Transmitters

continues on next page

83

Premiere Pro C++ SDK Guide, Release 24.0

Table 1 – continued from previous page
Suite Name Relevant to Plug-in Type
Playmod Render Suite None (Deprecated)
PPix Cache Suite Importers
PPix Creator Suite All
PPix Creator 2 Suite All
PPix Suite All
PPix 2 Suite All
Quality Suite None (Deprecated)
RollCrawl Suite Exporters
Scope Render Suite None (Deprecated)
Sequence Audio Suite Exporters
Sequence Info Suite Importers, Transitions, Video Filters
Sequence Render Suite Exporters
Stock Image Suite None (Deprecated)
String Suite All
Threaded Work Suite All
Time Suite All
Transmit Invocation Suite All
Video Segment Render Suite Exporters
Video Segment Suite Exporters
Window Suite All

29.2 Acquiring and Releasing the Suites

All SweetPea suites are accessed through the Utilities Suite. Plugins can acquire the suites.

SPBasicSuite SPBasic = NULL;
PrSDKPixelFormatSuite *PixelFormatSuite = NULL;

SPBasic = stdParmsP->piSuites->utilFuncs->getSPBasicSuite();

if (SPBasic) {
SPBasic->AcquireSuite (kPrSDKPixelFormatSuite, kPrSDKPixelFormatSuiteVersion, (const␣
→˓void**)&PixelFormatSuite);
}

Don’t forget to release the suites when finished!

if (SPBasic && PixelFormatSuite)
{
SPBasic->ReleaseSuite (kPrSDKPixelFormatSuite,

kPrSDKPixelFormatSuiteVersion);
}

84 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

29.2.1 Versioning

Generally from version to version, the changes made to a suite are additive, so it is recommended to work with the most
recent version of a suite if possible. However the latest version of a suite may not be supported by older versions of
Premiere Pro or other host applications. Attempting to acquire suites that are unsupported by the host application will
result in a NULL pointer being returned from AcquireSuite.

For a plugin to support multiple versions, it may choose to use a specific older version of the suite that is supported
across those multiple versions. Alternatively, it may check the version of the host application (using the App Info Suite),
and use the new suites where available, or the older suites when running in an older version. To acquire a specific older
version of a suite, rather than requesting kPrSDKPixelFormatSuiteVersion in the example above, use a specific version
number instead.

29.3 App Info Suite

Useful for plug-i that are shared between different applications, such as After Effects plugins, Premiere exporters,
transmitters, and importers, where it may be important to know which host, version, or language the plugin is currently
running in. Note that this suite is not available to AE effects running in AE.

This suite provides the host application and version number. For a version such as 6.0.3, it will return major = 6, minor
= 0, and patch = 3. See PrSDKAppInfoSuite.h.

Starting in version 2 of the suite, introduced in CC, the suite has a new selector to retrieve the build number. SpeedGrade
CC supports this suite starting with the July 2013 update.

In version 3, starting in CC 2014, the suite has a new selector to retrieve the language as a NULL-terminated string
identifying the locale used in the host application. For example: “en_US”, “ja_JP”, “zh_CN”.

29.4 Application Settings Suite

New in CS4. This suite provides calls to get the scratch disk folder paths defined in the current project, where the
captured files and preview files are created. It also provides a call to get the project file path. All paths are passed back
as PrSDKStrings. Use the new String Suite to extract the strings to UTF-8 or UTF-16. See PrSDKApplicationSet-
tingsSuite.h.

29.5 Audio Suite

Calls to convert to and from the native audio format used by the Premiere API, at various bit depths. See PrSDKAu-
dioSuite.h.

29.3. App Info Suite 85

Premiere Pro C++ SDK Guide, Release 24.0

29.6 Captioning Suite

This suite enables a device controller, exporter, player, or transmitter to get the closed captioning data attached to a
sequence. This suite provides the data in either Scenarist (CEA-608, *.scc) and MacCaption (CEA-708, *.mcc) formats.
In the case of CEA-708, it includes not just the text to display, but it’s also the position information, and background,
font, etc. If the transmitter or player just wants to overlay the captioning data on a frame, it can use the Playmod Overlay
Suite instead.

29.7 Clip Render Suite

New in 2.0. Use this suite in the player or renderer, to request source frames directly from the importer. There are calls
to find the supported frame sizes and pixel formats, so that the caller can make an informed decision about what format
to request. Frames can be retrieved synchronously or asynchronously. Asynchronous requests can be cancelled, for
example if the frames have passed their window of playback. See PrSDKClipRenderSuite.h.

Starting in CS4, this suite includes calls to find any custom pixel format supported by a clip, and to get frames in those
custom pixel formats.

An exporter can use this suite to request frames from the renderer in a compressed pixel format.

29.8 Error Suite

Uses a single callback for errors, warnings, and info. This callback will activate a flashing icon in the lower left-hand
corner of the main application window, which when clicked, will open up the new Events Window containing the error
information. See PrSDKErrorSuite.h.

Starting in version 3 of the suite, introduced in CS4, the suite supports UTF-16 strings. Starting in CS6, exporters
should use the Exporter Utility Suite to report events.

29.9 File Registration Suite

Used for registering external files (such as textures, logos, etc) that are used by a plugin instance but do not appear as
footage in the Project Window. Registered files will be taken into account when trimming or copying a project using
the Project Manager. See PrSDKFileRegistrationSuite.h.

86 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

29.10 Flash Cue Marker Data Suite

New in CS4. Specific utilities to read Flash cue points. Use in conjunction with the Marker Suite. See PrSDKFlashCue-
MarkerDataSuite.h.

29.11 Image Processing Suite

New in CS5. Various calls to get information on pixel formats and process frames. The ScaleConvert() call is the way
to copy-convert from a buffer of any supported pixel format to a separate memory buffer.

In version 2, new in CS5.5, we have added StampDVFrameAspect(), which allows a plugin to set the aspect ratio of a
DV frame. This was added to supplement ScaleConvert(), which doesn’t have an aspect ratio parameter.

29.12 Marker Suite

New in CS4. New way to read markers of all types. See PrSDKMarkerSuite.h.

29.13 Memory Manager Suite

New in Premiere Pro 2.0. Calls to allocate and deallocate memory, and to reserve an amount of memory so that it is
not used by the host. See PrSDKMemoryManagerSuite.h.

In CS6, the suite is now at version 4. AdjustReservedMemorySize provides a way to adjust the reserved memory size
relative to the current size. This may be easier for the plugin, rather than maintaining the absolute memory usage and
updating it using the older ReserveMemory call.

29.13.1 ReserveMemory

A plugin instance can call ReserveMemory as a request to reserve space so that Premiere’s media cache does not use
it. Each time ReserveMemory is called, it updates Premiere Pro on how many bytes the plugin instance is currently
reserving. The amount specified is absolute, rather than cumulative. So to release any reserved memory to be made
available to Premiere Pro’s media cache, call it with a size of 0. However, it’s not needed to reset this when exporters
are destructed on exSDK_EndInstance, since the media manager will be deleting all the references anyways.

ReserveMemory changes the maximum size of Premiere’s Media Cache. So if the cache size starts at 10 GB, and you
reserve 1 GB, then the cache will not grow beyond 9 GB. ReserveMemory will reserve a different amount of memory,
depending on the amount of available memory in the system, and what other plugin instances have already reserved.
The media cache needs a minimum amount of memory to play audio, render, etc.

Starting in version 2 of the suite, introduced in CS4, there are calls to allocate/deallocate memory. This is necessary
for exporters, which are not passed the legacy memFuncs.

29.10. Flash Cue Marker Data Suite 87

Premiere Pro C++ SDK Guide, Release 24.0

29.14 Pixel Format Suite

See the table of supported pixel formats. GetBlackForPixelFormat returns the minimum (black) value for a given pixel
format. GetWhiteForPixelFormat returns the maximum (white) value for a given pixel format. Pixel types like YUYV
actually contain a group of two pixels to specify a color completely, so the data size returned in this case will be 4 bytes
(rather than 2). This call does not support MPEG-2 planar formats.

ConvertColorToPixelFormattedData converts an BGRA/ARGB value into a value of a different pixel type. These
functions are not meant to convert entire frames from one colorspace to another, but may be used to convert a single
color value from a filter color picker or transition border. To convert frames between pixel formats, see the Image
Processing Suite.

New in Premiere Pro 4.0.1, MAKE_THIRD_PARTY_CUSTOM_PIXEL_FORMAT_FOURCC() defines a custom pixel format.

29.15 Playmod Overlay Suite

New in CS5.5. A transmitter can ask Premiere Pro to render the overlay for a specific time. As of CS6, this is only
used for closed captioning.

To render the closed captioning overlay, it is not necessary to know anything about the closed captioning data, whether
it is CEA-608 or CEA-708. RenderImage will simply produce a PPixHand.

The reason why it’s not called Closed Captioning Overlay Suite is because going forward we want to use it as a general
suite that provides all kinds of overlays. That way, when we add more overlay types in the future, you don’t need to
worry about updating your player each time to mirror the implementation on your side. In the future, we will likely use
this same suite to render static overlays, such as safe areas. To support those, even if VariesOverTime returns false, you
can call HasVisibleRegions at time 0.

Version 2 in CC 2014 removes CalculateVisibleRegions().

29.15.1 RenderImage

Render the overlay into an optionally provided BGRA PPixHand. RenderImage does not composite the overlay onto
an existing frame, it just renders the overlay into the visible regions. After rendering the overlay at the player’s display
size, you will then need to composite that result over the frame.

If the user has zoomed the video, it could be wasteful to render a full-sized overlay image and then scale it. For
better performance, the overlay can be rendered at the actual display size. The inDisplayWidth, inDisplayHeight and
inLogicalRegion parameters provide this extra information needed to optimize for scaling in the UI.

As an example, let’s say the sequence is 720x480 at 0.9091 PAR, and the Sequence Monitor is set to show the full
frame at square PAR. Set inLogicalRegion to (0, 0, 720, 480), and inDisplayWidth to 654 and inDisplayHeight to 480.

If the Monitor zoom level was set to 50%, then the inLogicalRegion should stay the same, but display width and height
should be set to 327x240. If zoomed to 200%, display width and height should be set to 1308x960. To pan around (as
opposed to showing the entire frame), the logical region should be adjusted to represent the part of the sequence frame
currently being displayed.

prSuiteError (*RenderImage)(
PrPlayID inPlayID,
PrTime inTime,
const prRect* inLogicalRegion,

(continues on next page)

88 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

int inDisplayWidth,
int inDisplayHeight,
prBool inClearToTransparentBlack,
PPixHand* ioPPix);

Parameter Description
inLogicalRegionThe non-scaled region of the source PPix to overlay
inDisplayWidth Width and height of PPix, if provided in ioPPix, scaled to account for Monitor zoom and PAR
inDisplayHeight
inClearToTransparentBlackIf kPrTrue, the frame will first be cleared to transparent black before render
ioPPix The frame into which to draw the overlay. If NULL, the host will allocate the PPix.

If provided, the PPix must be BGRA, square pixel aspect ratio, and sized to inDisplayWidth &
inDisplayHeight.

29.15.2 GetIdentifier

prSuiteError (*GetIdentifier)(
PrPlayID inPlayID,
PrTime inTime,
const prRect* inLogicalRegion,
int inDisplayWidth,
int inDisplayHeight,
prBool inClearToTransparentBlack,
prPluginID* outIdentifier);

29.15.3 HasVisibleRegions

prSuiteError (*HasVisibleRegions)(
PrPlayID inPlayID,
PrTime inTime,
const prRect* inLogicalRegion,
int inDisplayWidth,
int inDisplayHeight,
prBool* outHasVisibleRegions);

29.15.4 VariesOverTime

prSuiteError (*VariesOverTime)(
PrPlayID inPlayID,
prBool* outVariesOverTime);

29.15. Playmod Overlay Suite 89

Premiere Pro C++ SDK Guide, Release 24.0

29.16 PPix Cache Suite

Used by an importer, player, or renderer to take advantage of the host application’s PPix cache. See PrSDKPPix-
CacheSuite.h.

Starting in version 2 of this suite, introduced in Premiere Pro 4.1, AddFrameToCache and GetFrameFromCache now
have two extra parameters, inPreferences and inPreferencesLength. Now frames are differentiated within the cache,
based on the importer preferences, so when the preferences change, the host will not use the old frame when it gets a
frame request.

Version 4, new in CS5.0.3, adds ExpireNamedPPixFromCache() and ExpireAllPPixesFromCache(), which allow a
plugin to remove one or all PPixes from the Media Cache, which can be useful if the media is changing due to being
edited in a separate application.

To expire an individual frames expired using ExpireNamedPPixFromCache(), the identifier must be known. The plugin
may specify an identifier using AddNamedPPixToCache(). If a frame is in the cache with multiple names, and you
expire any one of those names, then the frame will be expired. Alternatively, for rendered frames, the identifier may be
retrieved using GetIdentifierForProduceFrameAsync() in the Video Segment Render Suite.

Clearing the cache will not interfere with any outstanding requests, because each request holds dependencies on the
needed frames.

Version 5, new in CS5.5, adds the new color profile-aware calls AddFrameToCacheWithColorProfile() and GetFrame-
FromCacheWithColorProfile().

Version 6, new in CC 2014, adds AddFrameToCacheWithColorProfile2() and GetFrameFromCacheWithColorPro-
file2(), which are the same as the ones added in version 5 with the addition of a PrRenderQuality parameter.

Version 7, adds AddFrameToCacheWithColorSpace() and GetFrameFromCacheWithColorSpace(), these APIs depre-
cate AddFrameToCacheWithColorProfile2() and GetFrameFromCacheWithColorProfile2().

29.17 PPix Creator Suite

Includes callbacks to create and copy PPixs. See also the PPix Creator 2 Suite.

29.17.1 CreatePPix

Creates a new PPix. The advantage of using this callback is that frames allocated are accounted for in the media cache,
and are 16-byte aligned.

ppixNew and newPtr don’t allocate memory in the media cache, or perform any alignment.

prSuiteError (*CreatePPix)(
PPixHand* outPPixHand,
PrPPixBufferAccess inRequestedAccess,
PrPixelFormat inPixelFormat,
const prRect* inBoundingRect);

90 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

Parameter Description
PPixHand *outPPixHand The new PPix handle if the creation was successful.

NULL otherwise.
PrPPixBufferAccess
inRequestedAccess

Requested pixel access. Read-only is not allowed (doesn’t make sense).
PrPPixBufferAccess values are defined in PPix Suite.

PrPixelFormat
inPixelFormat

The pixel format of this PPix

29.17.2 ClonePPix

Clones an existing PPix.

It will ref-count the PPix if only read access is requested and the PPix to copy from is read-only as well, otherwise it
will create a new one and copy.

prSuiteError (*ClonePPix)(
PPixHand inPPixToClone,
PPixHand* outPPixHand,
PrPPixBufferAccess inRequestedAccess);

Parameter Description
PPixHand inPPixToClone The PPix to clone from.
PPixHand *outPPixHand The new PPix handle if the creation was successful.

NULL otherwise.
PrPPixBufferAccess
inRequestedAccess

Requested pixel access.
Only read-only is allowed right now.
PrPPixBufferAccess values are defined in PPix Suite.

29.18 PPix Creator 2 Suite

More callbacks to create PPixs, including raw PPixs.

Starting in version 2 of this suite, introduced in Premiere Pro 4.0.1, there is a new CreateCustomPPix call to create a
PPix in a custom pixel format.

New APIs added to create PPix with specific color space. Color aware Importers should use new color managed APIs
for PPix creation. See PrSDKPPixCreator2Suite.h.

29.18. PPix Creator 2 Suite 91

Premiere Pro C++ SDK Guide, Release 24.0

29.19 PPix Suite

Callbacks and enums pertaining to PPixs. See also PPix 2 Suite.

29.19.1 PrPPixBufferAccess

Can be either:

• PrPPixBufferAccess_ReadOnly,

• PrPPixBufferAccess_WriteOnly,

• PrPPixBufferAccess_ReadWrite

29.19.2 Dispose

This will free this PPix. The PPix is no longer valid after this function is called.

prSuiteError (*Dispose)(
PPixHand inPPixHand);

Parameter Description
PPixHand inPPixHand The PPix handle to dispose.

29.19.3 GetPixels

This will return a pointer to the pixel buffer.

prSuiteError (*GetPixels)(
PPixHand inPPixHand,
PrPPixBufferAccess inRequestedAccess,
char** outPixelAddress);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
PrPPixBufferAccess inRequestedAccess
Most PPixs do not support write access modes.

Requested pixel access.

char** outPixelAddress The output pixel buffer address.
May be NULL if the requested pixel access is not sup-
ported.

92 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

29.19.4 GetBounds

This will return the bounding rect.

prSuiteError (*GetBounds)(
PPixHand inPPixHand,
prRect* inoutBoundingRect);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
prRect* inoutBoundingRect The address of a bounding rect to be filled in.

29.19.5 GetRowBytes

This will return the row bytes of the PPix.

prSuiteError (*GetRowBytes)(
PPixHand inPPixHand,
csSDK_int32* outRowBytes);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
csSDK_int32*
outRowBytes

Returns how many bytes must be added to the pixel buffer address to get to the next
line.

29.19.6 GetPixelAspectRatio

This will return the pixel aspect ratio of this PPix.

prSuiteError (*GetPixelAspectRatio)(
PPixHand inPPixHand,
csSDK_uint32* outPixelAspectRatioNumerator,
csSDK_uint32* outPixelAspectRatioDenominator);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
PrPixelFormat* outPixelFormat Returns the pixel format of this PPix

29.19.7 GetUniqueKey

This will return the unique key for this PPix.

Returns If
error the buffer size is too small (call GetUniqueKeySize to get the correct size)
error the key is not available
success the key data was filled in

29.19. PPix Suite 93

Premiere Pro C++ SDK Guide, Release 24.0

prSuiteError (*GetUniqueKey)(
PPixHand inPPixHand,
unsigned char* inoutKeyBuffer,
size_t inKeyBufferSize);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
unsigned char* inoutKeyBuffer Storage for the key to be returned.
size_t inKeyBufferSize Size of buffer

29.19.8 GetUniqueKeySize

This will return the unique key size. This will not change for the entire run of the application.

prSuiteError (*GetUniqueKeySize)(
size_t* outKeyBufferSize);

Parameter Description
size_t* outKeyBufferSize Returns the size of the PPix unique key.

29.19.9 GetRenderTime

This will return the render time for this PPix.

prSuiteError (*GetRenderTime)(
PPixHand inPPixHand,
csSDK_int32* outRenderMilliseconds);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
csSDK_int32*
outRenderMilliseconds

Returns the render time in milliseconds.
If the frame was cached, the time will be zero.

29.20 PPix 2 Suite

A call to get the size of a PPix. Starting in version 2 of this suite, introduced in CS4, there is a new
GetYUV420PlanarBuffers call to get buffer offsets and rowbytes of YUV_420_MPEG2 pixel formats. See PrSD-
KPPix2Suite.h.

94 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

29.21 RollCrawl Suite

Used by a player or renderer to obtain the pixels for a roll/crawl. The player or render can then move and composite it
using accelerated algorithms or hardware. See PrSDKRollCrawlSuite.h.

29.22 Sequence Info Suite

New in CS4. Calls to get the frame size and pixel aspect ratio of a sequence. This is use-

ful for importers, transitions, or video filters, that provide a custom setup dialog with a preview of the video, so that the
preview frame can be rendered at the right dimensions. See PrSDKSequenceInfoSuite.h.

Version 2, new in CS5.5, adds GetFrameRate().

Version 3, new in CC, adds GetFieldType(), GetZeroPoint(), and GetTimecodeDropFrame().

29.23 String Suite

New in CS4. Calls to allocate, copy, and dispose of PrSDKStrings. See PrSDKStringSuite.h.

29.24 Threaded Work Suite

New in CS4. Calls to register and queue up a threaded work callback for processing on a render thread. If you queue
multiple times, it is possible for multiple threads to call your callback. If this is a problem, you’ll need to handle this
on your end.

29.25 Time Suite

A SweetPea suite that includes the following structure, callbacks, and enum:

29.25.1 pmPlayTimebase

Member Description
csSDK_uint32 scale rate of the timebase
csSDK_int32 sampleSize size of one sample
csSDK_int32 fileDuration number of samples in file

29.21. RollCrawl Suite 95

Premiere Pro C++ SDK Guide, Release 24.0

29.25.2 PrVideoFrameRates

Member Description
kVideoFrameRate_24Drop 24000 / 1001
kVideoFrameRate_24 24
kVideoFrameRate_PAL 25
kVideoFrameRate_NTSC 30000 / 1001
kVideoFrameRate_30 30
kVideoFrameRate_PAL_HD 50
kVideoFrameRate_NTSC_HD 60000 / 1001
kVideoFrameRate_60 60
kVideoFrameRate_Max 0xFFFFFFFF

29.25.3 GetTicksPerSecond

Get the current ticks per second. This is guaranteed to be constant for the duration of the runtime.

prSuiteError (*GetTicksPerSecond)(
PrTime* outTicksPerSec);

29.25.4 GetTicksPerVideoFrame

Get the current ticks in a video frame rate. inVideoFrameRate may be any of the PrVideoFrameRates enum.

prSuiteError (*GetTicksPerVideoFrame)(
PrVideoFrameRates inVideoFrameRate,
PrTime* outTicksPerFrame);

29.25.5 GetTicksPerAudioSample

Get the current ticks in an audio sample rate.

+===================================+===+
| Returns | If | +===================================+===+
| kPrTimeSuite_RoundedAudioRate | the requested audio sample rate is not an even di-
visor of the base tick count and therefore times in this rate will not be exact. |
+———————————–+———–+
| kPrTimeSuite_Success | otherwise | +———————————–+———–+

prSuiteError (*GetTicksPerAudioSample)(
float inSampleRate,
PrTime* outTicksPerSample);

96 Chapter 29. SweetPea Suites

Premiere Pro C++ SDK Guide, Release 24.0

29.26 Video Segment Render Suite

This suite uses the built-in software path for rendering, and supports subtree rendering. This means the plugin can ask
the host to render a part of the segment, and then still handle the rest of the rendering. This is useful if, for example,
one of the layers has an effect that the plugin cannot render itself. The plugin can have the host render that layer, but
then handle the other layers along with the compositing.

In version 2, new in CS5.5, the new call SupportsInitiateClipPrefetch() can be used to query whether or not a
clip supports prefetching.

In version 3, new in CS6, the function signatures have been modernized, using inSequenceTicksPerFrame rather
than inFrameRateScale and inFrameRateSampleSize.

29.27 Video Segment Suite

This suite provides calls to parse a sequence and get details on video segments. All the queryable node properties
are in PrSDKVideoSegmentProperties.h. These properties will be returned as PrSDKStrings, and should be managed
using the String Suite. The segments provide a hash value that the caller can use to quickly determine whether or not
a segment has changed. This hash value can be maintained even if a segment is shifted in time

In version 4, new in CS5.5, the new call AcquireNodeForTime() passes back a segment node for a requested time.
There are also a few new properties for media nodes: StreamIsContinuousTime, ColorProfileName, ColorProfileData,
and ScanlineOffsetToImproveVerticalCentering.

In version 5, new in CC, a new video segment property is available: Effect_ClipName. In version 6, new in CC 2014,
AcquireFirstNodeInTimeRange() and

AcquireOperatorOwnerNodeID() were added, along with the new node type kVideoSeg-
ment_NodeType_AdjustmentEffect.

The basic structure of the video segments is that of a tree structure. There is a Compositor node with n inputs. Each of
those inputs is a Clip node, which has one input which is a Media node, and it also has n Operators, which are effects.

So, a simple example, three clips in a stack, the top one with three effects looks like this:

Segment
Compositor Node
Clip Node
Media Node (bottom clip) Clip Node

Clip Node
Media Node (middle clip) Clip Node

Clip Node
Media Node (top clip)
Clip Operators (Blur, Color Corrector, Motion)

To get a good idea of the segment structure, try the SDK player, create a sequence using the SDK Editing Mode, and
watch the text overlay in the Sequence Monitor as you perform edits.

See PrSDKVideoSegmentSuite.h and PrSDKVideoSegmentProperties.h.

29.26. Video Segment Render Suite 97

Premiere Pro C++ SDK Guide, Release 24.0

29.28 Window Suite

New in CS4. This is the new preferred way to get the handle of the mainframe window, especially for exporters, who
don’t have access to the legacy piSuites.

98 Chapter 29. SweetPea Suites

CHAPTER

THIRTY

LEGACY CALLBACK SUITES

30.1 piSuites

These callbacks are available to all plugins, although many of these callbacks are only appropriate for specific plugin
types.

typedef struct {
int piInterfaceVer;
PlugMemoryFuncsPtr memFuncs;
PlugWindowFuncsPtr windFuncs;
PlugppixFuncsPtr ppixFuncs;
PlugUtilFuncsPtr utilFuncs;
PlugTimelineFuncsPtr timelineFuncs;

} piSuites, *piSuitesPtr;

Member Description
piInterfaceVer API version

• Premiere Pro CS4 - PR_PISUITES_VERSION_9
• Premiere Pro CS3 - PR_PISUITES_VERSION_8
• Premiere Pro 2.0 - PR_PISUITES_VERSION_7
• Premiere Pro 1.5.1 - PR_PISUITES_VERSION_6
• Premiere Pro 1.5 - PR_PISUITES_VERSION_5
• Premiere Pro 1.0 - PR_PISUITES_VERSION_4
• Premiere 6.x - PR_PISUITES_VERSION_3
• Premiere 5.1 - PR_PISUITES_VERSION_2
• Premiere 5.0 - PR_PISUITES_VERSION_1

memfuncs Pointer to memory functions
windFuncs Pointer window functions
ppixFuncs Pointer PPix functions
utilFuncs Pointer to utility functions. In the utilFuncs, the get-

SPBasicSuite callback provides access to the SweetPea
Suites, which are used for most of the newer functions.

timelineFuncs Pointer to timeline functions

99

Premiere Pro C++ SDK Guide, Release 24.0

30.1.1 Memory Functions

Memory and handle allocation. Where possible, use the PPix Creator Suite for PPix-specific allocation.

Strings passed to and from Premiere in API structures are always null-terminated C strings.

Function Description
newPtr Allocates a block of memory, returns a pointer to the new

block.
char* newPtr (csSDK_uint32 size);

newPtrClear Equivalent to newPtr, but initializes the memory to 0.

char* newPtrClear (csSDK_uint32 size);

setPtrSize Resizes an allocated memory block.

void setPtrSize (
PrMemoryPtr *ptr,
csSDK_uint32 newsize);

getPtrSize Returns size in bytes of an allocated memory block.

csSDK_int32 getPtrSize (char *ptr);

disposePtr Frees an allocated memory block.

void disposePtr (char *ptr);

newHandle Allocates a block of memory, returning a handle to it.

char** newHandle (csSDK_uint32 size);

newHandleClear Equivalent to newHandle, but initializes the memory to
0.
char** newHandleClear (csSDK_uint32 size);

setHandleSize Resizes an allocated memory handle.

csSDK_int16 setHandleSize (
char **PrMemoryHandle,
csSDK_uint32 newsize);

getHandleSize Returns the size (in bytes) of an allocated block.

csSDK_int32 getHandleSize (char␣
→˓**PrMemoryHandle);

disposeHandle Disposes of a previously allocated handle.

void disposeHandle (char␣
→˓**PrMemoryHandle);

lockHandle unlockHandle These legacy functions are deprecated and should no
longer be used.

100 Chapter 30. Legacy Callback Suites

Premiere Pro C++ SDK Guide, Release 24.0

30.1.2 Window Functions

Window management routines. Superceded by the Window Suite.

Function Description
updateAllWindows Updates all windows. Windows only, doesn’t work on

Mac OS.
void updateAllWindows (void);

getMainWnd Returns the main application HWND.

void getMainWnd (void);

30.1.3 PPix Functions

Used to manipulate a PPix. Superceded by the PPix Creator Suite for PPix allocation and the PPix Suite for general
PPix functions.

30.1. piSuites 101

Premiere Pro C++ SDK Guide, Release 24.0

Function Description
ppixGetPixels Returns a pointer to the array of pixels contained in a

PPix.
char* ppixGetPixels (PPixHand pix);

ppixGetBounds Returns the bounds of a PPix.
void ppixGetBounds (
PPixHand pix;
prRect *bounds);

ppixGetRowbytes Returns the rowbytes of a PPix so you can properly parse
the pixels returned by ppixGetPixels.

int ppixGetRowbytes (PPixHand pix);

ppixNew Allocates and returns a handle to a new PPix, with spec-
ified bounds.
Since this is an older call, the pixel format is hardcoded
to BGRA_4444_8u.
PPixHandle ppixNew (prRect *bounds);

ppixDispose Frees a PPixHand.
void ppixDispose (PPixHand pix);

ppixLockPixels ppixUnlockPixels These legacy functions are deprecated and should no
longer be used.

ppixGetPixelAspectRatio Passes back the pixel aspect ratio of a PPixHand.
Premiere populates the longs with the PAR numerator
and denominator.
int ppixGetPixelAspectRatio (
PPixHand pix,
csSDK_uint32 *num,
csSDK_uint32 *den);

ppixGetAlphaBounds Passes back the alpha bounds of a PPixHand.

void ppixGetAlphaBounds (
PPixHand pix,
prRect *alphaBounds);

102 Chapter 30. Legacy Callback Suites

Premiere Pro C++ SDK Guide, Release 24.0

30.1. piSuites 103

Premiere Pro C++ SDK Guide, Release 24.0

30.1.4 Utility Functions

Function Description
getSerialNumber Passes back Premiere’s serial number.

void getSerialNumber (char* buffer);

• buffer: must be at least 40 characters long.

getFileTimebase Passes back a file’s timebase in a TDB_TimeRecord (al-
located by the plugin).
If the file is already in the sequence, it is preferable to get
a file’s timebase using the Video Segment Suite to get the
kVideoSegmentProperty_Media_StreamFrameRate.
Note: Know your formats. Don’t ask an audio only for-
mat for video, you may get unexpected results.

csSDK_int32 getFileTimebase (
prFileSpec *filespec,
csSDK_int32 audioOnly,
TDB_TimeRecord *result);

• filespec: description of the file, use before get-
FileVideo

• audioOnly: if non-zero, return the audio time-
base. If zero, return the video timebase.

• result: the returned timebase

getFileVideo Gets a frame of video (at a specified time) from a file.
If the file is already in the sequence, it is preferable to
get a file’s video using the Clip Render Suite.

csSDK_int32 getFileVideo (
prFileSpec *filespec,
csSDK_int32 frame,
PPixHand thePort,
prRect *bounds,
csSDK_int32 flags);

• filespec: the description of the file
• frame: the frame to retrieve
• thePort: where the frame will be delivered, al-

locate prior to calling
• bounds: the boundary of the port
• flags: unused

getFileVideoBounds Passes back the bounds of a file. If the file is already in
the sequence, it is preferable to get a file’s video bounds
using the Clip Render Suite.

csSDK_int32 getFileVideoBounds (
prFileSpec *filespec,
prRect *bounds);

getSPBasicSuite This very important call returns the SweetPea suite that
allows plugins to acquire and release all other SweetPea
Suites.
SPBasicSuite* getSPBasicSuite();

getFileExtString Passes back the list of valid entensions/filter strings
given a class of media (see file types constants below).

csSDK_int32 (*plugGetFileExtStringFunc)(
csSDK_uint32 fileTypes,
char *inBuffer,
csSDK_uint32 inBufferSize);

• kFileTypes_Still: still media
• kFileTypes_AudioOnly: audio-only media
• kFileTypes_AudioVideo: audio and video me-

dia
• kFileTypes_AllNoIntrinsics: all im-

portable media types via importer plugins (no
prproj, txt, etc)

104 Chapter 30. Legacy Callback Suites

Premiere Pro C++ SDK Guide, Release 24.0

30.1. piSuites 105

Premiere Pro C++ SDK Guide, Release 24.0

30.1.5 Timeline Functions

Function Description
getClipVideo Superceded by the Clip Render Suite, which provides

asynchronous import.
Retrieves a frame from a clip in a segment tree returned
from the Video Segment Suite.
It can be used by to retrieve and store a still frame, such
as a title, for playback.
This call is expensive; use it carefully.

csSDK_int32 getClipVideo (
csSDK_int32 frame,
PPixHand thePort,
prRect *bounds,
csSDK_int32 flags,
PrClipID clipData);

• frame: the frame number you’re requesting
• thePort: allocate using the PPix Creator Suite

before calling
• bounds: the boundaries of video to return
• flags: either kGCVFlag_UseFilePixelAspectRatio

or 0. Setting it to
kGCVFlag_UseFilePixelAspectRatio
will return a PPix stamped with the PAR of the
file. Setting it to 0 will return a PPix adjusted to
the PAR of the project and stamped accordingly.
It scales, but does not stretch the PPix to fit
the destination PPix that is passed in. So if the
destination PPix is larger than the frame asked
for, the frame will maintain its frame aspect
ratio, letterboxing or pillarboxing the frame
with transparent black. To import a frame at
its native dimensions, use getClipVideoBounds,
allocate the destination PPix using the dimen-
sions returned, and pass the PPixHand and the
dimensions into getClipVideo. If the frame
size is not the same as the sequence size, the
frame must be positioned in the composite by the
plugin.

• clipData: the clipData handle found in prtFil-
eRec

getWorkArea Passes back two longs with the start and end of the cur-
rent work area (read-only).
Set timelineData to the timelineData of the current se-
quence.

csSDK_int32 getWorkArea (
PrTimelineID timelineData,
csSDK_int32 *workAreaStart,
csSDK_int32 *workAreaEnd);

getCurrentTimebase Passes back the current timebase of the timeline (scale
+ sampleSize).

void getCurrentTimebase(
PrTimelineID timelineData,
csSDK_uint32 *scale,
csSDK_int32 *sampleSize);

• timelineData: the timelineData of the current
sequence

• scale: the sequence scale
• sampleSize: the sequence sampleSize

getCurrentPos Returns the position of the current time indicator (the
position bar set by the user).
If (-1) is returned, the position bar in the timeline is not
present.

csSDK_int32 getCurrentPos(
PrTimelineID timelineData);

• timelineData: the timelineData of the current
sequence

getPreviewFrameEx Gets a fully rendered frame from the timeline (all layers).
Used by video filters and transitions for previews in a
modal setup dialog.
If the return value is -1, an error occurred, but if it is 0,
the callback has returned safely.
Exporters rendering final movies should NOT use this
callback.
csSDK_int32 getPreviewFrameEx(
PrTimelineID timelineData,
csSDK_int32 inFrame,
PPixHand* outRenderedFrame,
const prRect* inFrameRect,
PrPixelFormat* ␣

→˓inRequestedPixelFormatArray,
csSDK_int32 ␣

→˓inRequestedPixelFormatArrayCount,
csSDK_uint32 ␣

→˓inPixelAspectRatioNumerator,
csSDK_uint32 ␣

→˓inPixelAspectRatioDenominator,
bool inAlwaysRender);

• timelineData: The timelineData of the current
sequence. Pass a timeline handle as provided
in EffectRecord, VideoRecord, compDoCompile-
Info, or imGetPrefsRec.

• inFrame: The frame to get, specified in the cur-
rent timebase. If a timelineData handle is speci-
fied (first param above), this frame will be relative
to the start of the sequence.

• outRenderedFrame: The destination buffer. Al-
locate prior to this call by the plugin using the
PPix Suite. Released by the caller before return-
ing.

getClipVideoBounds Passes back the dimensions of a clip in a sequence. For
rolling/ crawling titles, use the Roll/Crawl Suite to get
the dimensions instead.
csSDK_int32 getClipVideoBounds (
PrClipID inClipData,
prRect *outBounds,
csSDK_uint32 ␣

→˓*outPixelAspectRatioNumerator,
csSDK_uint32 ␣

→˓*outPixelAspectRatioDenominator);

getClipVideoEx Superceded by the Clip Render Suite, which provides
asynchronous import.
Retrieves a frame from a clip in a segment tree returned
from the Video Segment Suite. It can be used by to re-
trieve and store a still frame, such as a title, for playback.
This call is expensive; use it carefully.

csSDK_int32 getClipVideoEx (
csSDK_int32 inFrame,
PPixHand *outRenderedFrame,
const prRect *inFrameRect,
const PrPixelFormat ␣

→˓*inRequestedPixelFormatArray,
csSDK_int32 ␣

→˓inRequestedPixelFormatArrayCount,
csSDK_uint32 ␣

→˓inPixelAspectRatioNumerator,
csSDK_uint32 ␣

→˓inPixelAspectRatioDenominator,
PrClipID inClipData);

• inFrame: the frame number you’re requesting, in
the timebase of the clip

• outRenderedFrame: Allocated by the host. The
plugin should dispose of the PPixHand when done

• inFrameRect: the boundaries of video to return.
To import a frame at its native dimensions, use
getClipVideoBounds. If the frame size is not the
same as the sequence size, the frame must be po-
sitioned in the composite by the plugin.

• inClipData: the PrClipID from the video seg-
ment

106 Chapter 30. Legacy Callback Suites

Premiere Pro C++ SDK Guide, Release 24.0

30.2 Bottleneck Functions

The pointer to the legacy bottleneck functions is passed only to transitions and video filters.

These functions are not exposed for other plugin types.

These functions are not aware of different pixel formats, and are intended only for 8-bit BGRA processing.

Sample usage:

((*theData)->bottleNecks->StretchBits) (*srcpix,
*dstpix,
&srcbox,
&srcbox,
0,
NULL);

30.2. Bottleneck Functions 107

Premiere Pro C++ SDK Guide, Release 24.0

Function Description
StretchBits Stretches and copies an image, including the alpha chan-

nel.
When the destination is larger than the source, it per-
forms bilinear interpolation for smooth scaling.

void StretchBits (
PPixHand srcPix,
PPixHand dstPix,
prRect srcRect,
prRect dstRect,
int mode,
prRgn rgn);

StretchBits only works on 8-bit PPixs. srcRect is the area
of the source PPix to copy; dstRect is used to scale the
copy.
Valid modes are cbBlend, cbInterp, and cbMaskHdl
For cbBlend, the low byte of the mode defines the
amount of blend between the source and destination in a
range of 0-255.
Example:
To blend 30% of the source with the destination, use
cbBlend | (30*255/100)
While much slower than cbBlend, cbInterp mode does
bilinear interpolation when resizing a source PPix to a
larger destination, resulting in a much smoother image.
cbMaskHdl tells StretchBits that prRgn is a handle to a
1-bit deep buffer the same size as the source and desti-
nation PPixs, to be used as a mask.
Pass 0 for no clipping. The prRgn parameter is only used
on Windows.

DistortPolygon Maps the source rectangle to a four-point polygon in the
destination.
void DistortPolygon (
PPixHand src,
PPixHand dest,
prRect *srcbox,
prPoint *dstpts);

When scaling up, DistortPolygon uses bilinear inter-
polation; it uses pixel averaging when scaling down.

MapPolygon Maps a four-point src polygon into a four-point polygon
(dstpts).
If the source polygon is a rectangle, it is equivalent to
DistortPolygon.

void MapPolygon (
PPixHand src,
PPixHand dest,
prPoint *srcpts,
prPoint *dstpts);

DistortFixed Equivalent to DistortPolygon, using fixed-point coordi-
nates.
void DistortFixed (
PPixHand src,
PPixHand dest,
prRect *srcbox,
LongPoint *dstpts);

FixedToFixed Equivalent to MapPolygon, using fixed-point coordi-
nates.
void FixedToFixed (
PPixHand src,
PPixHand dest,
LongPoint *srcpts,
LongPoint *dstpts);

DoIndexMap Image map function.

void DoIndexMap (
char *src,
char *dst,
short row,
short, pixwidth,
short, height,
char *lookup1,
char *lookup2,
char *lookup3);

DoConvolve Convolution function.
void DoConvolve (
unsigned char *src,
unsigned char *dst,
short *inmatrix,
short, rowBytes,
short, width,
short, height);

108 Chapter 30. Legacy Callback Suites

CHAPTER

THIRTYONE

HARDWARE

To integrate hardware with Premiere Pro, you may consider developing up to five types of plugins: importers, recorders,
exporters, transmitters, and device controllers. Premiere Pro provides the user interface for the capture, timeline,
monitor, and export panels; the plugins provide the functionality behind the interface.

109

Premiere Pro C++ SDK Guide, Release 24.0

110 Chapter 31. Hardware

CHAPTER

THIRTYTWO

HARDWARE INTEGRATION COMPONENTS

32.1 Importers

Importers are used whenever frames of video or audio from a clip are needed. To give Premiere Pro the ability to read
media that uses a new format or codec, develop an importer. See Importers for more information.

32.2 Recorders

Users may choose a recorder in Project > Project Settings > General > Capture Format. Recorders are used to grab
frames from a hardware source and write them to a file, to be imported for editing.

32.3 Exporters

Exporters are used whenever Premiere Pro renders preview files, or performs an export on a clip or sequence. To give
Premiere Pro the ability to write media that uses a new format or codec, develop an exporter. The exporter used to
render preview files in the timeline is set in Sequence > Sequence Settings > Preview File Format. The exporter used
for exports is chosen when the user selects File > Export > Media > File Type. See Exporters for more information.

32.4 Transmitters

A transmitter handles the display of video on any external A/V hardware and secondary output. To give Premiere Pro
the ability to play video out to hardware for preview and final playout, write a transmitter. See Transmitters for more
information.

111

Premiere Pro C++ SDK Guide, Release 24.0

112 Chapter 32. Hardware Integration Components

CHAPTER

THIRTYTHREE

CLASSID, FILETYPE AND SUBTYPE

All plugin types that support media must identify unique classID, filetype, and subtype.

These are all four character codes, or ‘fourCCs’.

Iden-
ti-
fier

Purpose

filetypeIdentifies the plugin’s associated file type(s).
plugins create lists of filetypes they support.

subtypeDifferentiates between files of the same filetype.
Identifies the codec or compression to be used.

classIDWith the new editing mode system starting in CS4, the classID is far less important.
It is used as part of the identification for exporters in the Editing Mode XML.
And plugins may share information with most other plugins running in the same process using the ClassData
Functions.

113

Premiere Pro C++ SDK Guide, Release 24.0

114 Chapter 33. ClassID, Filetype and Subtype

CHAPTER

THIRTYFOUR

CLASSDATA FUNCTIONS

All plugin types that support media can use these callbacks to share information associated with their classID.

For example, these plugins can confirm their hardware is present and operational using the ClassData functions.

They all call getClassData during initialization. If getClassData returns 0, the module checks for and initialize
the hardware.

It then calls setClassData to store information about the current context. Use handles, not pointers, for storing info.

typedef struct {
SetClassDataFunc setClassData;
GetClassDataFunc getClassData;

} ClassDataFuncs, *ClassDataFuncsPtr;

Function Description
setClassData Writes class data, destroys previous data.

int setClassData (
unsigned int theClass,
void *info);

• theClass - the class being set. Use a unique 4-
byte code.

• info - the class data to be set. It can be used as a
pointer or a handle.

Note that all plugins that share the data must use the
same data structure.

getClassData Retrieves the class data for the given class.

int getClassData (
unsigned int theClass);

• theClass - the class for which to retrieve data.

115

Premiere Pro C++ SDK Guide, Release 24.0

116 Chapter 34. ClassData Functions

CHAPTER

THIRTYFIVE

IMPORTERS

Importers provide video, audio and/or closed captioning from the media source. This source can be a single file, a set
of files, a communication link between another application, etc.

Standard importers appear as choices in the File > Import dialog, in the Files of type drop-down menu. Importers can
support movies, still images, series of still images, and/or audio. If your importer provides enhanced support for a
format already supported by another importer that ships with Premiere, set a high value in imImportInfoRec.priority
to give your importer the first opportunity to handle the file.

Synthetic importers synthesize source material, rather than reading from disk. They appear in the File > New menu.

Custom importers are a special type of synthetic importer, implemented to better support titlers. Custom importers
can create files on disk; synthetic importers don’t. Custom importers either create new media or import existing media
handled by the importer. After the file is created, the media is treated like a standard file by the host application.
Additionally, the media can be modified by the importer when the user double-clicks on it in the Project Panel.

Importer Type Reads from disk Creates clips Menu Location
Standard Yes No File > Import
Synthetic No Yes File > New
Custom Yes Yes File > New File > Import

If you’ve never developed an importer before, you can skip What’s New, and go directly to Getting Started.

117

Premiere Pro C++ SDK Guide, Release 24.0

118 Chapter 35. Importers

CHAPTER

THIRTYSIX

WHAT’S NEW

36.1 What’s New in Premiere Pro CC 2019 (13.0)

We’ve begun adding colorspace support to Premiere Pro’s APIs, beginning with Importers.

Adding APIs AddFrameToCacheWithColorSpace() and GetFrameFromCacheWithColorSpace() which will deprecate
AddFrameToCacheWithColorProfile2() and GetFrameFromCacheWithColorProfile2().

36.2 What’s New in Premiere Pro CC 2014

Importers can now choose the format they are rendering in, which allows importers to change pixel formats and quality
based on criteria like enabled hardware and other Clip Source Settings, such as HDR. To handle the negotiation,
implement imSelectClipFrameDescriptor.

imSourceVideoRec now includes a quality attribute. PPix Cache Suite is now at version 6, adding AddFrameToCache-
WithColorProfile2() and

GetFrameFromCacheWithColorProfile2(), which are the same as the ones added in version 5 with the addition of a
PrRenderQuality parameter.

imFileInfoRec8.highMemUsage is no longer supported.

36.3 What’s New in Premiere Pro CC October 2013 release?

imInitiateAsyncClosedCaptionScanRec now provides extra fields for the importer to fill in the estimated duration of
all the captions. This is useful for certain cases where the embedded captions contain many frames of empty data.

119

Premiere Pro C++ SDK Guide, Release 24.0

36.4 What’s New in Premiere Pro CC?

Starting in CC, importers can support closed captioning that is embedded in the source media. Note that Premiere Pro
can also import and export captions in a sidecar file (e.g. .mcc, .scc, or

.xml) alongside any media file, regardless of the media file format. This does not require any specific work on the
importer side. The importer only needs to add support if it will support embedded closed captions.

Importers can now support audio beyond basic mono, stereo, and 5.1, without implementing multiple streams (existing
importers do not need to be updated). The importer specifies a channel layout by implementing the new imGetAu-
dioChannelLayout selector. Otherwise the channel layout will be assumed to be discrete.

The clip preferences are now passed with imIndPixelFormatRec, so that an importer can choose to return varying pixel
formats depending on the Clip Source Settings.

36.5 What’s New in Premiere Pro CS6.0.2?

This release adds more support for growing files by adding a new flag, imFileInfoRec8.mayBeGrowing.

36.6 What’s New in Premiere Pro CS6?

Importers can now bring in stereoscopic footage as a single clip with separate left and right channels.

With some additional work, importers can now support growing files. The refresh rate for growing files is set by the
user in Preferences > Media > Growing Files. The importer should get the refresh rate using the new call GetGrowing-
FileRefreshInterval() in the Importer File Manager Suite. Call RefreshFileAsync() to refresh the file.

A new selector, imQueryInputFileList, was added to support Collect Files in After Effects for file types that use more
than a single file. In imImportInfoRec, a new member, canProvideFileList, specifies whether the importer can
provide a list of all files for a copy operation. If the importer does not implement this selector, the host will assume the
media just uses a single file at the original imported media path.

The Media Accelerator Suite is now at version 4. FindPathInDatabaseAndValidateContentState provides a new way to
find existing media accelerators, making sure they are up-to-date.

Importers can now choose whether or not they want to provide peak audio data on a clip-by-clip basis.

The importer-wide setting still remains in imImportInfoRec.canProvidePeakAudio, but an importer can override
the general setting by setting imFileInfoRec8.canProvidePeakAudio appropriately.

120 Chapter 36. What’s New

Premiere Pro C++ SDK Guide, Release 24.0

36.7 What’s New in Premiere Pro CS5.5?

Importers can now support color management, when running in After Effects. The importer should set imImageIn-
foRec.colorProfileSupport to imColorProfileSupport_Fixed, and then describe the color profiles supported by the clip
using the new imGetIndColorProfile selector. When importing the frame, specify the color profile in imSourceV-
ideoRec. selectedColorProfileName. The PPix Cache Suite has been updated to differentiate between color profiles as
well.

New canProvidePeakAudio flag to allow an importer to provide peak audio data by responding to imGetPeakAudio.

The new return value, imRequiresProtectedContent, allows an importer to be disabled if a library it depends on has not
been activated.

36.8 What’s New in Premiere Pro CS5?

When an importer’s settings dialog is opened, the importer now has access to the resolution, pixel aspect ratio, timebase,
and audio sample rate of the source clip, in imGetPrefsRec.

Custom importers can now use a new call in the Importer File Manager Suite,

RefreshFileAsync(), to be able to update a clip after it is modified in imGetPrefs8.

Two new selectors have been added. imQueryDestinationPath allows importers that trim or copy files to be able to
change the destination path of the trimmed or copy file. imQueryContentState gives the host an alternate way of
checking the state of a clip, for clips that have multiple source files. A new return value, inFileNotAvailable can be
returned from imQueryContentState if the clip is no longer available because it is offline or has been deleted.

As a convenience, when a file is opened, an importer can tell Premiere Pro how much memory to reserve for the
importer’s usage, rather than calling ReserveMemory in the Memory Manager Suite. The importer should pass back
this value in imFileOpenRec8.outExtraMemoryUsage.

Several new return values are available for more descriptive error reporting:

• imBadHeader,

• imUnsupportedCompression,

• imFileOpenFailed,

• imFileHasNoImportableStreams,

• imFileReadFailed,

• imUnsupportedAudioFormat,

• imUnsupportedVideoBitDepth,

• imDecompressionError, and

• imInvalidPreferences

36.7. What’s New in Premiere Pro CS5.5? 121

Premiere Pro C++ SDK Guide, Release 24.0

36.9 What’s New in Premiere Pro CS4?

For CS4 only, importers are loaded and called from a separate process. As a result of being in a separate process, (1)
all importers must do their own file handling, (2) privateData is no

longer accessible from imGetPrefs8, and (3) the compressed frame selectors such as imGetCompressedFrame are no
longer supported (this may now be achieved using custom pixel formats and a renderer plugin).

To debug importers, attach to the ImporterProcessServer process. There is also a separate Importer Process Plugin
Loading.log.

All legacy selectors have been removed, and are now longer supported. All structures used only in these legacy selectors
have been removed as well.

There are built-in XMP metadata handlers for known filetypes. These handlers write and read metadata to and from
the file, without going through the importer. imSetTimeInfo8 is no longer called, since this is set by the XMP handler
for that filetype.

All file-based importers (which does not include synthetics) are required to do their own file handling now, rather
than having Premiere Pro open the files. The imCallbackFuncs: OpenFileFunc and ReleaseFileFunc are no longer
supported.

Due to the out-of-process importing, privateData is not accessible during imGetPrefs8, and has been removed from
imGetPrefsRec.

imGetFrameInfo, imDisposeFrameInfo, imGetCompressedFrame, and imDisposeCompressedFrame are no longer sup-
ported. Supporting a custom pixel format in an importer, a renderer, and an exporter is the new way to implement smart
rendering, by passing custom compressed data from input to output.

New imFrameNotFound return code. Returned if an importer could not find the requested frame (typically used with
async importers).

New in Premiere Pro 4.1, importer prefs are now part of imSourceVideoRec, passed to both

imGetSourceVideo and the async import calls

New in Premiere Pro 4.1, there is a new filepath member in imFileInfoRec8. For clips that have audio in files separate
from the video file, set the filename here, so that UMIDs can properly be generated for AAFs.

36.10 What’s New in Premiere Pro CS3?

Importers can specify an initial poster frame for a clip in imImageInfoRec.

Importers can specify subtype names during the new imGetSubTypeNames selector. This selector is sent after each
imGetIndFormat, which gives an importer the opportunity to enumerate all the fourCCs and display names (e.g.
“Cinepak”) of their known compression types for a specific filetype. The importer can return imUnsupported, or create
an array of imSubTypeDescriptionRec records (pairs of fourCCs and codec name strings) for all the codecs/subtypes
it knows about.

Importers that open their own files should specify how many files they keep open between imOpenFile8 and
imQuietFile using the new Importer File Manager Suite, if the number is not equal to one. Importers that don’t
open their own files, or importers that only open a single file should not use this suite. Premiere’s File Manager now
keeps track of the number of files held open by importers, and limits the number open at a time by closing the least
recently used files when too many are open. On Windows, this helps memory usage, but on Mac OS this addresses a
whole class of bugs that may occur when too many files are open.

122 Chapter 36. What’s New

Premiere Pro C++ SDK Guide, Release 24.0

Importers can also specify that certain files have very high memory usage, by setting imFileInfoRec8.
highMemUsage. The number of files allowed to be open with this flag set to true is currently capped at 5.

Importers can now specify an arbitrary matte color for premultiplied alpha channels in imImageInfoRec.
matteColor. Importers can state that they are uncertain about a clip’s pixel aspect ratio, field type, or alpha info
in imImageInfoRec.interpretationUncertain.

The imInvalidHandleValue is now -1 for Mac OS.

Importers can specify a transform matrix for frames by setting imImageInfoRec.canTransform = kPrTrue, and
then during imImportImage, when imImportImageRec.applyTransform is non-zero, use imImportImageRec.
transform, and destClipRect to calculate the transform - This code path is currently not called by Premiere Pro.
After Effects uses this call to import Flash video.

New in Premiere Pro 3.1, the new capability flag, imImportInfoRec.canSupplyMetadataClipName, allows an
importer to set the clip name from metadata, rather than the filename. The clip name should be set in imFileInfoRec8.
streamName. This is useful for clips recorded by some new file-based cameras.

New in Premiere Pro 3.1, the new imGetFileAttributes selector allows an importer to provide the clip creation date in
the new imFileAttributesRec.

36.10. What’s New in Premiere Pro CS3? 123

Premiere Pro C++ SDK Guide, Release 24.0

124 Chapter 36. What’s New

CHAPTER

THIRTYSEVEN

GETTING STARTED

37.1 The Basics of Import

For each clip, importers can tell Premiere the resolutions and pixel formats they can decode video frames to.

Premiere will request video frames as needed during scrubbing, playback, or export.

Audio will be requested right when the clip is imported, if audio conforming or peak file generation is necessary.

If audio conforming is not necessary, audio frames will be requested as needed during scrubbing, playback, or export.

Premiere requests audio in arrays of 32-bit float, uninterleaved format.

37.2 Try the Sample Importer Plug-ins

Choose which one of the three sample importers matches closest with your desired functionality.

Build that one, or if you are still not sure, build all three! Step through the code in your debugger to learn order of
events.

Start your importer by modifying one of the SDK samples.

37.3 imGetSourceVideo versus imImportImage

For synchronous import, there are two different selectors an importer can use to provide frames to the host.

Why? imGetSourceVideo is best for media that has specific resolutions.

Importers that support imGetSourceVideo can import frames at their native resolution or specify preferred resolutions,
rather than having to scale the frames to an arbitrary size.

imImportImage is only useful for resolution-independent video, such as vector-based graphics.

Choose the one that fits the media your importer will support.

The SDK importer demonstrates imGetSourceVideo because resolution dependent video is much more common.

The synthetic importer sample demonstrates imImportImage because it generates video on-the-fly and doesn’t have a
preference as to video resolution.

125

Premiere Pro C++ SDK Guide, Release 24.0

imImageInfoRec.supportsGetSourceVideo should be set to true if the importer wants to support imGetSourceV-
ideo.

37.4 Asynchronous Import

Importers can optionally support asynchronous calls to read frames for better performance. imImageIn-
foRec.supportsAsyncIO should be set to true if the importer wants to support asynchronous import. The importer
can implement imCreateAsyncImporter, which tells the importer to create an asynchronous importer object using the
data provided, and store it in imAsyncImporterCreationRec.

This async importer object must implement a separate entry point from a standard importer because it does not follow
the same rules as a standard importer.

All calls to AsyncImporterEntry are reentrant, except for the aiClose selector. aiClose will only be called once, but
may be called while other calls are still executing. No calls will be made after aiClose is called.

Here is an overview of the lifetime of an async importer:

1) The host calls imOpenFile and imGetInfo on the standard importer.

2) The host calls imCreateAsyncImporter on the standard importer. At this time, the standard importer creates the
private data for the async importer. The async importer MUST NOT contain a link to the standard importer, as
their lifetimes are now decoupled. The async importer, therefore, must contain copies of all relevant private data
from the creator importer. The importer preferences are also guaranteed to not change during the lifetime of the
async importer.

3) The host uses the async importer to perform i/o.

4) The host closes the async importer, forgetting about it. This will happen whenever the app loses focus, or when
the async importer is no longer needed.

37.5 privateData

Don’t use global variables to store data. Use privateData instead. Each clip can have its own privateData. The host
application will automatically pass the correct privateData to the appropriate importer instance.

For privateData, create a handle to the custom structure you wish to store (during imGetInfo8 or imGetPrefs8.) and
save the handle to the privateData member of the structure passed in.

The importer is responsible for allocating and deallocating the memory for privateData using Premiere’s memory
functions.

Free the allocated privateData during imCloseFile or imShutdown, as appropriate.

126 Chapter 37. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

37.6 Clip Source Settings

This data is unique to each clip instance, and can be used to store clip-wide data that affects the appearance of video
and/or audio in the clip, usually user-modifiable.

For example, Clip Source Settings for a titler/graphics importer could contain all the data describing the text and shapes
for that clip.

For a raw video clip, it could contain metadata that affects how the video is developed prior to import.

Starting in Premiere Pro CC 2014, importers can now choose the format they are rendering in, which allows importers
to change pixel formats and quality based on criteria like enabled hardware and other Clip Source Settings, such as
HDR.

To handle the negotiation, implement imSelectClipFrameDescriptor.

Clip Source Settings can be shown on file creation (for synthetic or custom importers) or when a clip is double-clicked.

Settings data should be stored in a disk-safe prefs structure, which is defined by the importer.

Premiere will allocate the prefs based on the prefsLength re turned from the first call to imGetPrefs8.

Premiere will deallocate the prefs when it is no longer needed.

Once prefs has been allocated, the importer should show its setup dialog during all subsequent calls to imGetPrefs8,
and store any setup dialog settings in prefs.

Like privateData, each clip has its own prefs, and the host application automatically passes the correct prefs to the
appropriate importer instance.

If the user changes the Clip Source Settings in a way such that the frames should be reimported, then the importer
should use the Importer File Manager Suite to call RefreshFileAsync() on the main file.

This is demonstrated in the SDK Custom Importer sample code.

37.6.1 Showing a Video Preview in the Settings Dialog

If a clip is placed in the timeline, and its settings dialog is opened by double-clicking in the timeline, then the import
can get frames from the timeline of the settings dialog. Only the rendered frames on layers beneath the current clip
or timeline location are available. Use the getPreviewFrameEx callback with the time given by tdbTimelocation in
imGetPrefsRec. timelineData is also valid during imGetPrefs8.

37.7 File Handling

Basic importers that bring in media from a single file can rely on the host to provide basic file handling. If a clip has
child files or a custom file system, an importer can provide its own file handling. Set canOpen, canSave, and canDelete
to true during imInit, and respond to imOpenFile8, imQuietFile, imCloseFile, imSaveFile8, imDeleteFile8.

Use the Async File Reader Suite for cross-platform file operations.

37.6. Clip Source Settings 127

Premiere Pro C++ SDK Guide, Release 24.0

37.7.1 Quieting versus Closing a File

When the application loses focus, importers receive imQuietFile for each file it has been asked to open. Update any
PrivateData and close the file. If the project is closed, imCloseFile is sent, telling the importer to free any PrivateData.
If the importer didn’t store any PrivateData, it will not receive imCloseFile.

37.7.2 Growing Files

When Premiere Pro attempts to refresh a growing file (after N seconds, as determined by the preferences value), it quiets
the existing importer instance, and opens a new one pointing to the same file. In response, the Importer should report the
current (new) duration and, once it’s determined whether the file is still growing, set imFileInfoRec.mayBeGrowing
appropriately.

37.7.3 Importing from Streaming Sources

For importing video from a streaming source, in order to pretend that the file is a local file or available on the network,
create a placeholder file like video_proxy.abc.

Inside this file, include info that lets your importer know it is your own type, and the http path, like this:

“MyCompany ABC streaming format placeholder file https://myurl.com/video.abc”

Your importer would open the local video_proxy.abc file, check the header and find it is your own placeholder file, and
then access the real contents at the http location included. To create the local

.abc files, you could use a custom importer that presents a OS dialog to choose the remote file, or a Premiere panel to
do so. The Panel SDK can be found here:

https://github.com/Adobe-CEP/Samples/tree/master/PProPanel

If the filetype is an existing filetype supported by Premiere Pro, then set a high value in imImportInfoRec.priority
to give your importer the first opportunity to handle the file.

For your filetype to be visible in the Proxy > Attach Proxies window, set imIndFormatRec. flags |= xfIsMovie (this flag
is labeled obsolete, but still needed for this case)

If your importer supports different fractional resolutions and decode qualities, the fractional resolutions can be enu-
merated in response to the selector imGetPreferredFrameSize, and the decode quality hint is sent on import requests to
your importer (for example in imSourceVideoRec.inQuality).

37.8 Audio Conforming and Peak File Generation

When a clip that contains audio is imported into Premiere, one or two types of files may be generated:

First, a separate .pek file is always created. This contains peak audio samples for quick access when Premiere needs to
draw the audio waveform, for example in the Source Monitor or Timeline panel.

Second, the audio may be conformed into a separate .cfa file. The conformed audio is in an interleaved 32-bit floating
point format that matches the sequence audio sample rate, to maximize the speed at which Premiere can render audio
effects and mix it without sacrificing quality.

Both of these files can be generated through sequential calls for audio using imImportAudio7. Audio conforming cannot
be disabled through the Premiere menus or API. However, if an importer can provide random-access, uncompressed
audio of the clip, Premiere will not conform the audio. All compressed audio data must be conformed.

128 Chapter 37. Getting Started

https://myurl.com/video.abc
https://github.com/Adobe-CEP/Samples/tree/master/PProPanel

Premiere Pro C++ SDK Guide, Release 24.0

Specifically, it is important to set these flags to avoid conforming: imImportInfoRec.avoidAudioConform = kPrTrue;
imFileInfoRec8.accessModes |= kRandomAccessImport;

Starting in CS5.5, peak audio data can also optionally be provided by the importer, if the importer implements a faster
way to read the peak audio data from the clip. By setting imImportInfoRec. canProvidePeakAudio to non-zero, the
importer will be sent imGetPeakAudio whenever this data is requested. Starting in CS6, if an importer wants to provide
peak audio data on a clip-by-clip basis, it can set imFileInfoRec8.canProvidePeakData accordingly.

The location of the .cfa and .pek files is determined by the user-specified path in Edit > Preferences > Media > Media
Cache Files. When the project is closed, the files will be cleaned up. If the source clip is not saved in the project, the
associated conformed audio files will be deleted.

Importers can get audio for scrubbing, playing and other timeline operations before conforming has completed, resulting
in responsive audio feedback during conforming. To do this, they must support both random access and sequential ac-
cess audio importing. The kSeparateSequentialAudio access mode should be set in imFileInfoRec8.accessModes.

37.9 Quality Levels

Importers can optionally support two different quality modes, with the imDraftMode flag that is used in imImportIm-
ageRec.

37.10 Closed Captioning

Starting in CC, importers can support closed captioning that is embedded in the source media. The built-in QuickTime
importer provides this capability. Note that Premiere Pro can also import and export captions in a sidecar file (e.g.
.mcc, .scc, or .xml) alongside any media file, regardless of the media file format. This does not require any specific
work on the importer side.

To support embedded closed captioning, set imImportInfoRec.canSupportClosedCaptions to true. The importer
should handle the following selectors: imInitiateAsyncClosedCaptionScan, imGetNextClosedCaption, and
imCompleteAsyncClosedCaptionScan.

imInitiateAsyncClosedCaptionScan will be called for every file that is imported through an importer that sets canSup-
portClosedCaptions to true. The plugin should at this point determine whether or not there is closed captioning data for
this file. If not, then the plugin should simply return imNoCaptions, and everything is done. If the plugin didn’t report
an error for that call, then imGetNextClosedCaption will be called until the plugin returns imNoCaptions. After which,
imCompleteAsyncClosedCaptionScan will be called informing the importer that the host is done requesting captions.

Both imGetNextClosedCaption and imCompleteAsyncClosedCaptionScan may be called from a different
thread from which imInitiateAsyncClosedCaptionScan was originally called. To help facilitate this,
outAsyncCaptionScanPrivateData during imInitiateAsyncClosedCaptionScan can be allocated by
the importer to be used for the upcoming calls, which can be deallocated

in imCompleteAsyncClosedCaptionScan.

37.9. Quality Levels 129

Premiere Pro C++ SDK Guide, Release 24.0

37.11 N-Channel Audio

Starting in CC, for audio configurations beyond mono, stereo, and 5.1, an importer can specify a channel layout by im-
plementing the new imGetAudioChannelLayout selector. Otherwise the channel layout will be assumed to be discrete.
For support prior to CC, the importer needs to import them as multiple streams.

37.12 Multiple Streams

Importers can support multiple streams of audio and/or video. For most filetypes with a single video and a simple audio
configuration (mono, stereo, or 5.1), only a single stream is necessary. Multiple streams can be useful for stereoscopic
footage, layered file types (like Photoshop PSD files), or clips with complex audio configuration (such as 4 mono audio
channels). The following describes the general case of multiple streams. For stereoscopic importers, please refer to the
description further down.

An importer describes each stream one-by-one during iterative calls to imGetInfo8. In response to each call, the importer
describes one stream, and returns imIterateStreams, until it reaches the last stream, and then it returns imBadStreamIn-
dex. Set imFileInfoRec8-

>streamsAsComp = kPrFalse, so that the set of streams appear as a single clip within Premiere Pro.

In imGetInfo8, save streamIdx in privateData, to have access to it later. That way, when called in imImportAudio7, the
importer will know which stream of audio to pass back.

See the sample code in the SDK File Importer, which can be turned on by uncommenting back in the MULTI-
STREAM_AUDIO_TESTING define in SDK_File_Import.h.

37.12.1 Stereoscopic Video

First, an importer must advertise multiple video streams. During imGetInfo8, the host passes in the stream index in
imFileInfoRec8.streamIdx. If the clip has a second stream, then on index 0 the importer should return imIterateStreams
and it will be called again for the second stream. On the second one you return imNoErr, as before. The nice thing is
that this works in Premiere Pro CS5.5 and earlier - when two video streams are present, on import, they will just appear
as two different project items.

Prior to CS6, an importer would need to have a prefs structure and on imGetInfo8 it would need to store the stream index
in that structure. With CS6 this is a lot simpler. Now, in the imSourceVideoRec (passed in imGetSourceVideo, and
part of the aiFrameRequest for async importers), the host application passes in the currentStreamIndex (in the value
formerly

known as unused1). This makes it much easier to just check when providing a PPix and differentiate the two streams.

Now, obviously, it is not desirable to have two project items. In order to get them merged, an importer needs to label
the streams (the logic here is pretty simple, if there are multiple labeled video streams, it will appear as a single project
item, and all views on that item will show the first stream). For this there is a new selector: imQueryStreamLabel. The
struct passed to the importer has its privateData, prefs data, and the stream index, and the label needs to be passed back
in a PrSDKString. If you’re not familiar with PrSDKStringSuite, it’s fairly obvious how to use. In this case you’ll be
allocating a string, passing either UTF-8 data, or UTF-16 data.

In PrSDKStreamLabel.h we define two labels: kPrSDK_StreamLabelStereoscopicLeft and kPrSDKStreamLa-
bel_Stereoscopic_Right. By convention, we expect Left to be stream 0 and Right to be stream 1. This is purely
for consistency - if we have multiple stereo clips from multiple importers, we would want the thumbnails to all be
consistent. If we stick to this convention, then the thumbnails will all be Left.

130 Chapter 37. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

To integrate well with other third-parties, we strongly encourage using these labels for stereoscopic importers. However,
the entire StreamLabel mechanism is intentionally left quite general. You could use whatever labels you want in your
importers and effects, and when you request the video segments you can pass whatever label you would like. If you
have other uses for this, we would be interested to hear about them, and we would welcome any bug reports.

37.13 Project Manager Support

The Project Manager in Premiere Pro allows users to archive projects, trim out unused media, or collect all source files
to a single location. Importers are the most knowledgable about the sources they work with. So Premiere Pro doesn’t
make any assumptions about the source media, but instead relies on the importers to handle the trimming and file size
estimates. Only importers that specifically support trimming will trim and not copy when the Project Manager trims
projects.

To support trimming, importers will want to set the canCalcSizes and canTrim flags during imInit, and support imCalc-
Size8, imCheckTrim8, and imTrimFile8.

If the each clip has more than one source file (such as audio channels in separate files), the importer should also set
canCopy and support imCopyFile. Otherwise, the Project Manager will not know about the other source files.

External files, such as textures, logos, etc. that are used by an importer instance but do not appear as footage in Project
panel, should be registered with Premiere Pro using the File Registration Suite during imGetInfo8 or imGetPrefs8.
Registered files will be taken into account when trimming or copying a project using the Project Manager.

37.14 Creating a Custom Importer

This variant of the importer API allows importers to dynamically create disk-based media while working within Pre-
miere. A titler plugin or similar should use this API. Once your clip is created, it is treated like any other standard file
and will receive all standard missing file handling.

A Custom Importer must do the following:

• Set the following flags true in imImportInfoRec; canCreate, canOpen, addToMenu, noFile. This tells Premiere
your plugin will create a clip on disk at imGetPrefs8 time.

• To determine when you need to create a new clip vs. modify an existing clip, check the imFileAccessRec
filename. If it’s identical to the plugin display name (as set in the PiPL), create a new clip; otherwise modify the
clip.

• If the user cancels from your dialog when creating a new clip, return imCancel.

• If the clip is modified, the importer needs to do a few things for Premiere to pick up the changes. Put your file
access information in the supplied imFileAccessRec. Premiere will use this data to reference your clip from
now on. Close the file handle after you create it. Return imSetFile after creating a file handle in imGetPrefs8.,
and call RefreshFileAsync() in the Importer

File Manager Suite to notify Premiere that the clip has been modified. Premiere will immediately call you to open the
file and return a valid imFileRef. Respond to imOpenFile8, imQuietFile, imCloseFile at a minimum.

37.13. Project Manager Support 131

Premiere Pro C++ SDK Guide, Release 24.0

37.15 Real-Time Rolling and Crawling Titles

For RT rolls and crawls, a player and importer must be specially designed to work together. An importer can implement
the appropriate functionality, but it is up to the player to take advantage of it.

Importers can make image data available for rolling and crawling titles, using imImageInfoRec.isRollCrawl. If
the importer sets it to non-zero, this declares that the image is a title or other image that does roll/crawl, and that the
importer supports the imGetRollCrawlInfo and imRollCrawlRenderPage selectors. imGetRollCrawlInfo is used to get
info on the roll/crawl from the importer, and imRollCrawlRenderPage is used to get a rendered page of the roll/crawl.

37.16 Troubleshooting

37.16.1 How to Get First Crack at a File

To get the first opportunity to import a filetype also supported by a built-in importer (e.g. MPEG, AVI, QuickTime,
etc), provide a different subtype and classID in order for your importer to be called for the types of files you support.
imImportInfoRec.priority must be higher than any of the other importers for that filetype. Set this value to 100 or higher
to override all built-in importers. Premiere Pro has more than one type of AVI importer and MPEG importer, which
use this same prioritization mechanism. So your importer can override all of them and get the first shot at a filetype.

Just because you want to take over handling some files of a given filetype, it doesn’t mean you have to handle all of them.
To defer an unsupported subtype to a lower priority importer, return imBadFile during imOpenFile8 or imGetInfo8.
See the Media Abstraction chapter for more information on filetypes, subtypes, and classIDs.

37.16.2 Format repeated in menu?

To avoid having your importer appear multiple times in the file formats supported pop-up list, fill out the formatName,
formatShortName and platform extension once and only once during your imGetIndFormat.

37.17 Resources

Importers must contain a IMPT resource. Premiere uses this to identify the plugin as an importer. Also, depending on
the type of importer (standard, synthetic, or custom), a PiPL may be required.

37.18 Entry Point

csSDK_int32 xImportEntry (
csSDK_int32 selector,
imStdParms *stdParms,
void *param1,
void *param2)

132 Chapter 37. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

selector is the action Premiere wants the importer to perform. stdParms provides callbacks to obtain additional infor-
mation from Premiere or to have Premiere perform tasks.

param1 and param2 vary with the selector; they may contain a specific value or a pointer to a structure. Return imNoErr
if successful, or an appropriate return code.

37.19 Standard Parameters

A pointer to this structure is sent from the host application to the plugin with every selector.

typedef struct {
csSDK_int32 imInterfaceVer;
imCallbackFuncs *funcs;
piSuitesPtr piSuites;

} imStdParms;

Member Description
imInterfaceVer Importer API version

• Premiere Pro CC 2014 -
IMPORTMOD_VERSION_15

• Premiere Pro CC - IMPORTMOD_VERSION_14
• Premiere Pro CS6.0.2 - IMPORTMOD_VERSION_13
• Premiere Pro CS6 - IMPORTMOD_VERSION_12
• Premiere Pro CS5.5 - IMPORTMOD_VERSION_11
• Premiere Pro CS5 - IMPORTMOD_VERSION_10
• Premiere Pro CS4 - IMPORTMOD_VERSION_9

funcs Pointers to callbacks for importers
piSuites Pointer to universal callback suites

37.20 Importer-Specific Callbacks

typedef struct {
ClassDataFuncsPtr classFuncs;
csSDK_int32 unused1;
csSDK_int32 unused2;

} imCallbackFuncs;

typedef csSDK_int32 (*importProgressFunc){
csSDK_int32 partDone;
csSDK_int32 totalToDo;

void *trimCallbackID};

37.19. Standard Parameters 133

Premiere Pro C++ SDK Guide, Release 24.0

Func-
tion

Description

classFuncsSee ClassData functions.
importProgressFuncAvailable in imSaveFileRec and imTrimFileRec during imSaveFile8 and imTrimFile8.

Callback function pointer for use during project archiving or trimming to call into Premiere and update
the progress bar and check for cancellation.
Either imProgressAbort or imProgressCon tinue will be returned.
The trimCallbackID parameter is passed in the same structures.

134 Chapter 37. Getting Started

CHAPTER

THIRTYEIGHT

SELECTOR TABLE

Before implementing a handler for a certain selector, make sure that it is really necessary for your importer. Many
selectors are optional, and only useful for certain special needs.

The Synth column indicates whether or not the selector is applicable to synthetic importers. Custom importers can
respond to any of the selectors.

Selector param1 param2 Synth
imInit imImportInfoRec* unused Yes
imShutdown unused unused Yes
imGetIndFormat (int) index imIndFormatRec* Yes
imGetSupports8 unused unused Yes
imGetSupports7 unused unused Yes
imGetInfo8 imFileAccessRec8* imFileInfoRec8* Yes
imCloseFile imFileRef* (void*) PrivateData** No
imGetIndPixelFormat (int) index imIndPixelFormatRec* Yes
imGetPreferredFrameSize imPreferredFrameSizeRec* unused Yes
imSelectClipFrameDescriptor imFileRef imClipFrameDescriptorRec* Yes
imGetSourceVideo imFileRef imSourceVideoRec* Yes
imCreateAsyncImporter imAsyncImporterCreationRec* unused Yes
imImportImage imFileRef imImportImageRec* Yes
imImportAudio7 imFileRef imImportAudioRec7* Yes
imResetSequentialAudio imFileRef imImportAudioRec7* Yes
imGetSequentialAudio imFileRef imImportAudioRec7* Yes
imGetPrefs8 imFileAccessRec8* imGetPrefsRec* Yes
imGetEmbeddedLUT (int) index imIndEmbeddedLUTRec* Yes

The following selectors are optional, to provide custom file handling:

Selector param1 param2 Synth
imOpenFile8 imFileRef* imFileOpenRec8* No
imQuietFile imFileRef* (void*) PrivateData** No
imSaveFile8 imSaveFileRec8* unused No
imDeleteFile imDeleteFileRec* unused No

The following selectors are optional, for better support copying and trimming files using the Project Manager:

135

Premiere Pro C++ SDK Guide, Release 24.0

Selector param1 param2 Synth
imCalcSize8 imCalcSizeRec* imFileAccessRec8* No
imCheckTrim8 imCheckTrimRec* imFileAccessRec8* No
imTrimFile8 imFileAccessRec8* imTrimFileRec8* No
imCopyFile imCopyFileRec* unused No
imRetargetAccelerator imAcceleratorRec* unused No
imQueryDestinationPath imQueryDestinationPathRec* unused No

The following selectors are used for embedded Closed Captioning support:

Selector param1 param2 Synth
imInitiateAsyncClosedCaptionScan imFileRef imInitiateAsyncClosedCaptionScanRec* No
imGetNextClosedCaption imFileRef imGetNextClosedCaptionRec* No
imCompleteAsyncClosedCaptionScan imFileRef imCompleteAsyncClosedCaptionScanRec* No

The following selectors are optional, useful for a subset of importers:

Selector param1 param2 Synth
imAnalysis imFileRef imAnalysisRec* Yes
imDataRateAnalysis imFileRef imDataRateAnalysisRec* No
imGetTimeInfo8 imFileRef imTimeInfoRec8* No
imSetTimeInfo8 imFileRef imTimeInfoRec8* No
imGetFileAttributes imFileAttributesRec* unused
imGetMetaData imFileRef imMetaDataRec* No
imSetMetaData imFileRef imMetaDataRec* No
imGetRollCrawlInfo imRollCrawlInfoRec* unused Yes
imRollCrawlRenderPage rollCrawlRenderRec* unused Yes
imDeferredProcessing imDeferredProcessingRec* unused No
imGetAudioChannelLayout imFileRef imGetAudioChannelLayoutRec* Yes
imGetPeakAudio imFileRef imPeakAudioRec* Yes
imQueryContentState imQueryContentStateRec* unused No
imQueryStreamLabel imQueryStreamLabelRec* unused Yes
imGetIndColorSpace (int) index imIndColorSpaceRec* Yes

Used only in After Effects:

Selector param1 param2 Synth
imGetSubTypeNames (csSDK_int32) fileType imSubTypeDescriptionRec* No
imGetIndColorProfile (int) index imIndColorProfileRec* No
imQueryInputFileList imQueryInputFileListRec* unused No

136 Chapter 38. Selector Table

CHAPTER

THIRTYNINE

SELECTOR DESCRIPTIONS

This section provides a brief overview of each selector and highlights implementation issues.

Additional implementation details are at the end of the chapter.

39.1 imInit

• param1 - imImportInfoRec*

• param2 - unused

Sent during application startup.

Describe the importer’s capabilities in the imImportInfoRec; all options are false by default.

The similarly named flags in imIndFormatRec.flags are obsolete and should not be used.

Set hasSetup to kPrTrue if the importer has a setup dialog, and setupOnDblClk to kPrTrue to have that dialog display
when the user double-clicks a file in the Project Panel; Premiere throws away any preview files generated for a file
imported with this setting, even if no setup dialog is displayed.

Return imIsCacheable from imInit if a plugin does not need to be called to initialize every time Premiere launched.

This will help reduce the time to launch the application.

39.1.1 Synthetic Importers

Setting noFile to kPrTrue indicates that the importer is synthetic.

Set addToMenu to kPrTrue to add the importer to the File > New menu.

39.1.2 Custom Importers

To create a custom importer, the following capabilities must be set.

See Additional Details for more info on custom importers.

noFile = kPrTrue;
hasSetup = kPrTrue;
canOpen = kPrTrue;
canCreate = kPrTrue;
addToMenu = imMenuNew;

137

Premiere Pro C++ SDK Guide, Release 24.0

39.2 imShutdown

• param1 - unused

• param2 - unused

Release all resources and perform any other necessary clean-up; sent when Premiere quits.

39.3 imGetIndFormat

• param1 - (int) index

• param2 - imIndFormatRec*

Sent repeatedly, immediately after imInit; enumerate the filetypes the plugin supports by populating the imIndForma-
tRec.

When finished, return imBadFormatIndex.

imIndFormatRec.flags are obsolete and should not be used.

39.3.1 Synthetic Importer selectors

Because they have no file, synthetic importers only need to respond with the filetype established in their resource.

Create a separate plugin for each synthetic file type.

39.4 imGetSupports8

• param1 - unused

• param2 - unused

A plugin that supports the Premiere Pro 2.0 API (and beyond) must return malSupports8.

39.5 imGetSupports7

• param1 - unused

• param2 - unused

A plugin that supports the Premiere Pro 1.0 API (and beyond) must return malSupports7.

138 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

39.6 imGetInfo8

• param1 - imFileAccessRec8*

• param2 - imFileInfoRec8*

Describe a clip, or a single stream of a clip if the clip has multiple streams.

Called when a specific file is instantiated.

Importer checks file validity, optionally allocates file instance data, and describes the properties of the file being im-
ported by populating the imFileInfoRec8.

39.6.1 Synthetic Importers

You can create a still frame, a movie of a set duration, or an ‘infinite’ length movie, but cannot change the properties
of a synthetic file once imported.

39.7 imCloseFile

• param1 - imFileRef*

• param2 - (void*) PrivateData**

The specified file is no longer required; dispose of privateData.

Only sent if privateData was allocated during imGetInfo8.

39.8 imGetIndPixelFormat

• param1 - (int) index

• param2 - imIndPixelFormatRec*

New optional selector called to enumerate the pixel formats available for a specific file.

This message will be sent repeatedly until all formats have been returned.

Pixel formats should be returned in the preferred order that the importer supports.

The Importer should return imBadFormatIndex after all formats have been enumerated.

imUnsupported should be returned on the first call if only yawn BGRA_4444_8u is supported.

What pixel formats should you support? Keep it real.

Just return the pixel format that most closely matches the data stored in your file.

If decoding to two or more formats can be done at about the same speed, declare support for both, but favor any pixel
formats that are more compact, to save on memory and bandwidth.

39.6. imGetInfo8 139

Premiere Pro C++ SDK Guide, Release 24.0

39.9 imGetPreferredFrameSize

• param1 - imFileRef

• param2 - imPreferredFrameSizeRec*

Provide the frame sizes preferred by the importer.

39.10 imSelectClipFrameDescriptor

• param1 - imFileRef

• param2 - imClipFrameDescriptorRec*

New in Premiere Pro CC 2014.

If the importer can provide multiple formats, describe the format it will provide here.

This allows importers to change pixel formats based on criteria like enabled hardware and other source settings, such
as HDR.

39.11 imGetSourceVideo

• param1 - imFileRef

• param2 - imSourceVideoRec*

Get the host an unscaled frame of video.

This selector will be sent instead of imImportImage if supportsGetSourceVideo is set to true during imGetInfo8.

39.12 imCreateAsyncImporter

• param1 - imAsyncImporterCreationRec*

• param2 - unused

Create an asynchronous importer object using the data provided, and store it in imAsyncImporterCreationRec.

140 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

39.13 imImportImage

• param1 - imFileRef

• param2 - imImportImageRec*

Note: In most cases, imGetSourceVideo is the better choice.

Before going down this route, read the discussion here.

Give the host a frame of video; populate the imImportImageRec buffer with pixel data, or (if you’ve set canDraw to
true during imInit) draw to the screen in the provided window using platform-specific calls to do so.

You must scale the image data to fit the window; Premiere relies on the import module for properly scaled frames.

39.14 imImportAudio7

• param1 - imFileRef

• param2 - imImportAudioRec7*

Replacement for imImportAudio that uses new imAudioInfoRec7.

Called to import audio using the new 32-bit float, uninterleaved audio format.

Fill imImportAudioRec7->buffer with the number of sample frames specified in imImportAudioRec7->size,
starting from imImportAudioRec7->position.

Always return 32-bit float, uninterleaved samples as described in Universals.

You may use the calls in the Audio Suite to do some common conversions.

39.15 imGetPrefs8

• param1 - imFileAccessRec8*

• param2 - imGetPrefsRec*

Only sent if clip filetype uses a setup dialog within Premiere.

Premiere sends this selector when the user imports (or creates, if synthetic) a file of your type, or when double-clicking
on an existing clip.

You must have set hasSetup = true during imInit to receive this selector.

Storing preferences is a two step process.

If the pointer in imGetPrefsRec.prefs is NULL, set prefsLength to the size of your preferences structure and return
imNoErr.

Premiere sends imGetPrefs again; display your dialog, and pass the preferences pointer back in imGetPrefsRec.
prefs.

Starting in Premiere Pro 1.5, the importer can get a frame from the timeline beneath the current clip or timeline location.

This is useful for titler plugins.

39.13. imImportImage 141

Premiere Pro C++ SDK Guide, Release 24.0

Use the getPreviewFrameEx callback with the time given by TDB_TimeRecord tdbTimelocation in
imGetPrefsRec.

39.15.1 Synthetic Importers

Synthetic importers can specify the displayable name by changing the newfilename member of imFileAccessRec8.

The first time this selector is sent, the imGetPrefsRec.timelineData, though non-null, contains garbage and should
not be used.

It will only contain valid information once the user has put the clip into the timeline, and is double-clicking on it.

39.15.2 Custom Importers

Custom importers should return imSetFile after successfully creating a new file, storing the file access information in
imFileAccessRec8.

Premiere will use this data to then ask the importer to open the file it created.

See Additional Details for more information on custom importers.

39.16 imOpenFile8

• param1 - imFileRef*

• param2 - imFileOpenRec8*

Open a file and give Premiere its handle.

This selector is sent only if canOpen was set to true during imInit; do so if you generate child files, you need to have
read and write access during the Premiere session, or use a custom file system.

If you respond to this selector, you must also respond to imQuietFile and imCloseFile.

You may additionally need to respond to imDeleteFile and imSaveFile; see Additional Details.

Close any child files during imCloseFile.

Importers that open their own files should specify how many files they keep open between imOpenFile8 and
imQuietFile using the new Importer File Manager Suite, if the number is not equal to one.

Importers that don’t open their own files, or importers that only open a single file should not use this suite.

Premiere’s File Manager now keeps track of the number of files held open by importers, and limits the number open at
a time by closing the least recently used files when too many are open.

On Windows, this helps memory usage, but on Mac OS this addresses a whole class of bugs that may occur when too
many files are open.

142 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

39.17 imQuietFile

• param1 - imFileRef*

• param2 - (void*) PrivateData**

Close the file in imFileRef, and release any hardware resources associated with it.

Respond to this selector only if canOpen was set to true during imInit.

A quieted file is closed (at the OS level), but associated privateData is maintained by Premiere.

Do not deallocate privateData in response to imQuietFile; do so during imCloseFile.

39.18 imSaveFile8

• param1 - imSaveFileRec8*

• param2 - unused

Save the file specified in imSaveFileRec8.

Only sent if canOpen was set to true during imInit.

39.19 imDeleteFile

• param1 - imDeleteFileRec*

• param2 - unused

Request this selector (by setting canDelete to true during imInit) only if you have child files or related files associated
with your file.

If you have only a single file per clip you do not need to delete your own files.

Numbered still file importers do not need to respond to this selector; each file is handled individually.

39.20 imCalcSize8

• param1 - imCalcSizeRec*

• param2 - imFileAccessRec8*

Called before Premiere trims a clip, to get the disk size used by a clip.

This selector is called if the importer sets imImportInfoRec.canCalcSizes to non-zero.

An importer should support this call if it uses a tree of files represented as one top-level file to Premiere.

The importer should calculate either the trimmed or current size of the file and return it.

If the trimIn and duration are set to zero, Premiere is asking for the current size of the file.

39.17. imQuietFile 143

Premiere Pro C++ SDK Guide, Release 24.0

If the trimIn and duration are valid values, Premiere is asking for the trimmed size.

39.21 imCheckTrim8

• param1 - imCheckTrimRec*

• param2 - imFileAccessRec8*

Called before Premiere trims a clip, to check if a clip can be trimmed at the specified boundaries.

imCheckTrimRec and imFileAccessRec are passed in.

The importer examines the proposed trimmed size of the file, and can change the requested in point and duration to
new values if the file can only be trimmed at certain locations (for example, at GOP boundaries in MPEG files).

If the importer changes the in and duration, the new values must include all the material requested in the original trim
request.

If an importer does not need to change the in and duration, it may either return imUnsupported, or imNoErr and simply
not change the in/duration fields.

If the importer does not want the file trimmed (perhaps because the audio or video would be degraded if trimmed at
all) it can return imCantTrim and the trim operation will fail and the file will be copied instead.

For a file with both audio and video, the selector will be sent several times.

The first time, imCheckTrimRec will have both keepAudio and keepVideo set to a non-zero value, and the trim
boundaries will represent the entire file, and Premiere is asking if the file can be trimmed at all.

If the importer returns an error, it will not be called again.

The second time, imCheckTrimRecwill have keepAudio set to a non-zero value, and the trim boundaries will represent
the audio in and out points in the audio timebase, and Premiere is asking if the audio can be trimmed on these boundaries.

The third time, imCheckTrimRec will have keepVideo set to a non-zero value, and the trim boundaries will represent
the video in and out points in the video timebase, and Premiere is asking if the video can be trimmed on these boundaries.

If either the video or audio boundaries extend further than the other boundaries, Premiere will trim the file at the furthest
boundary.

39.22 imTrimFile8

• param1 - imFileAccessRec8*

• param2 - imTrimFileRec8*

Called when Premiere trims a clip.

imFileAccessRec8 and imTrimFileRec8 are passed in.

imDiskFull or imDiskErr may be returned if there is an error while trimming.

The current file, inPoint, and new duration are given and a destination file path.

If a file has video and audio, the trim time is in the video’s timebase.

For audio only, the trim times are in the audio timebase.

144 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

A simple callback and callbackID is passed to imTrimFile8 and imSaveFile8 that allows plugins to query whether
or not the user has cancelled the operation.

If non-zero (and they can be nil), the callback pointer should be called to check for cancellation.

The callback function will return imProgressAbort or imProgressContinue.

39.23 imCopyFile

• param1 - imCopyFileRec*

• param2 - unused

imCopyFile is sent rather than imSaveFile to importers that have set imImportInfoRec can Copy when doing a
copy operation using the Project Manager.

The importer should maintain data on the original file rather than the copy when it returns from the selector.

39.24 imRetargetAccelerator

• param1 - imAcceleratorRec*

• param2 - unused

When the Project Manager copies media and its accelerator, this selector gives an opportunity to update the accelerator
to refer to the copied media.

39.25 imQueryDestinationPath

• param1 - imQueryDestinationPathRec*

• param2 - unused

New in CS5.

This allows the plugin to modify the path that will be used for a trimmed clip, so the trimmed project is written with
the correct path.

39.26 imInitiateAsyncClosedCaptionScan

• param1 - imFileRef

• param2 - imInitiateAsyncClosedCaptionScanRec*

39.23. imCopyFile 145

Premiere Pro C++ SDK Guide, Release 24.0

New in CC.

Gives a chance for the importer to allocate private data to be used during the scan for any closed captions embedded in
the clip.

If there are no captions, return imNoCaptions.

39.27 imGetNextClosedCaption

• param1 - imFileRef

• param2 - imGetNextClosedCaptionRec*

New in CC.

Called iteratively, each time asking the importer for a single closed caption embedded in the clip.

After returning the last caption, return imNoCaptions to signal the end of the scan.

39.28 imCompleteAsyncClosedCaptionScan

• param1 - imFileRef

• param2 - imCompleteAsyncClosedCaptionScanRec*

New in CC.

Called to cleanup any temporary data used while getting closed captions embedded in the clip, and to see if the scan
completed without error.

39.29 imAnalysis

• param1 - imFileRef

• param2 - imAnalysisRec*

Provide information about the file in the imAnalysisRec; this is sent when the user views the Properties dialog for your
file.

Premiere displays a dialog with information about the file, including the text you provide.

146 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

39.30 imDataRateAnalysis

• param1 - imFileRef

• param2 - imDataRateAnalysisRec*

Give Premiere a data rate analysis of the file.

Sent when the user presses the Data Rate button in the Properties dialog, and is enabled only if hasDataRate was true
in the imFileInfoRec returned during imGetInfo.

Premiere generates a data rate analysis graph from the data provided.

39.31 imGetTimeInfo8

• param1 - imFileRef

• param2 - imTimeInfoRec8*

Read any embedded timecode data in the file.

Supercedes imGetTimeInfo.

39.32 imSetTimeInfo8

• param1 - imFileRef

• param2 - imTimeInfoRec8*

Sent after a capture completes, where timecode was provided by the recorder or device controller.

Use this to write timecode data and timecode rate to your file.

See Universals for more information on time in Premiere.

Supercedes imSetTimeInfo.

Timecode rate is important for files that have timecode, but not an implicit frame rate, or where the sampling rate might
differ from the timecode rate.

For example, audio captured from a tape uses the video’s frame rate for timecode, although its sampling rate is not
equal to the timecode rate.

Another example is capturing a still from tape, which could be stamped with timecode, yet not have a media frame rate.

39.30. imDataRateAnalysis 147

Premiere Pro C++ SDK Guide, Release 24.0

39.33 imGetFileAttributes

• param1 - imFileAttributesRec*

Optional.

Pass back the creation date stamp in imFileAttributesRec.

39.34 imGetMetaData

• param1 - imFileRef

• param2 - imMetaDataRec*

Called to get a metadata chunk specified by a fourcc code.

If imMetaDataRec->buffer is null, the plugin should set buffersize to the required buffer size and return imNoErr.

Premiere will then call again with the appropriate buffer already allocated.

39.35 imSetMetaData

• param1 - imFileRef

• param2 - imMetaDataRec*

Called to add a metadata chunk specified by a fourcc code.

39.36 imDeferredProcessing

• param1 - imDeferredProcessingRec*

• param2 - unused

Describe the current progress of the deferred processing on the clip.

39.37 imGetAudioChannelLayout

• param1 - imFileRef

• param2 - imGetAudioChannelLayoutRec*

New in CC.

Called to get the audio channel layout in the file.

148 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

39.38 imGetPeakAudio

• param1 - imFileRef

• param2 - imPeakAudioRec*

Optional selector allows Premiere to get audio peak data directly from the importer.

This is used for synthetic clips longer than five minutes.

Providing peak data can significantly improve waveform rendering performance when the user views audio waveform
of the clip in the Source Monitor.

The values provided are floats, in the range 0.0 to 1.0 in amplitude. There is an array which has an array of float
* for each audio channel the importer reported for this stream. The float * point to float[inNumSampleFrames]
which needs to be filled in by the importer. The inSampleRate is the sample rate of the returned data; in the case that
inNumSampleFrame = 1000 and inSampleRate = 10, the importer would fill in 1000 min values and 1000 max
values per channel, with 10 values per second of original audio.

39.39 imQueryContentState

• param1 - imQueryContentStateRec*

• param2 - unused

New in CS5.

This is used by streaming importers and folder based importers (P2, XDCAM, etc) that have multiple files that comprise
the content.

If an importer doesn’t support the selector then the host checks the last modification time for the main file.

39.40 imQueryStreamLabel

• param1 - imQueryStreamLabelRec*

• param2 - unused

New in CS6.

This is used by stereoscopic importers to specify which stream IDs represent the left and right eyes.

39.38. imGetPeakAudio 149

Premiere Pro C++ SDK Guide, Release 24.0

39.41 imGetSubTypeNames

• param1 - (csSDK_int32) fileType

• param2 - imSubTypeDescriptionRec*

New optional selector added for After Effects CS3.

As of CS4, this info still isn’t used in Premiere Pro, but is used in After Effects to display the codec name in the Project
Panel.

The importer should fill in the codec name for the specific subtype fourcc provided.

This selector will be sent repeatedly until names for all subtypes have been requested.

The imSubTypeDescriptionRec must be allocated by the importer, and will be released by the plugin host.

39.42 imGetIndColorProfile

• param1 - (int) index

• param2 - imIndColorProfileRec*

Only sent if the importer has set imImageInfoRec.colorProfileSupport to imColorProfileSupport_Fixed.

This selector is sent iteratively for the importer to provide a description of each color profile supported by the clip.

After all color profiles have been described, return a non-zero value.

39.43 imGetIndColorSpace

• param1 - (int) index

• param2 - imIndColorSpaceRec*

This is new selector for enumerating color spaces of media.

Only sent if the importer has set imImageInfoRec.colorSpaceSupport to imColorSpaceSupport_Fixed.

This selector is sent iteratively for the importer to provide a description of each color space supported by the clip.

After all color spaces have been described, return a non-zero value.

39.44 imQueryInputFileList

• param1 - imQueryInputFileListRec*

• param2 - unused

150 Chapter 39. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

New for After Effects CS6; not used in Premiere Pro.

If an importer supports media that uses more than a single file (i.e.

a file structure with seperate files for metadata, or separate video and audio files), this is the way the importer can
specify all of its source files, in order to support Collect Files in After Effects.

In imImportInfoRec, a new member, canProvideFileList, specifies whether the importer can provide a list of all
files for a copy operation.

If the importer does not implement this selector, the host will assume the media just uses a single file at the original
imported media path.

39.45 imGetEmbeddedLUT

This is a selector for enumerating the LUTs embedded in the media.

• param1 - (int) index.

• param2 - EmbeddedLUTRec*

Sent if Importer reported that it has embedded LUT. The first time it is called, the inDestinationBuffer will be NULL.
Fill in the required size for the buffer, set the correct space type, and Premiere Pro will call your importer back with
enough memory.

39.45. imGetEmbeddedLUT 151

Premiere Pro C++ SDK Guide, Release 24.0

152 Chapter 39. Selector Descriptions

CHAPTER

FORTY

RETURN CODES

Return Code Reason
imNoErr Operation has completed without error.
imTooWide File dimensions too large.
imBadFile Bad file format. To defer an unsupported subtype to a lower priority importer, return this during imOpenFile8 or imGetInfo8.
imUnsupported Unsupported selector.
imMemErr Memory error.
imOtherErr Unknown error.
imNoContent No audio or video.
imBadRate Bad audio rate.
imBadCompression Bad compression.
imBadCodec Codec not found.
imNotFlat Unflattened QuickTime movie.
imBadSndComp Bad sound compression.
imNoTimecode Timecode supported, but not found.
imMissingComponent Missing component needed to open the file.
imSaveErr Error saving file.
imDeleteErr Error deleting file.
imNotFoundErr The requested metadata chunk was not found.
imSetFile Return this from imGetPrefs8 only if you are a custom importer and you need Premiere to alter it’s file access information (e.g. a new path or filename is created).
imIterateStreams Return from imGetInfo8 to indicate that there are more streams to describe. Premiere will send imGetInfo8 for the next stream.
imBadStreamIndex Return from imGetInfo8 after interating through streams to indicate that there are no more streams to describe.
imCantTrim Return from imCheckTrim if the file cannot be trimmed by the importer.
imDiskFull Return from imTrimFile8 if there is not enough space to complete the trim operation.
imDiskErr Return from imTrimFile8 if there is a general disk or I/O error during the trim operation.
imFileShareViolation Return from imOpenFile8 if file cannot be opened due to another process having exclusive read access
imIterateFrameSizes Return from imGetPreferredFrameSize, to be called again to describe more frame sizes for a particular pixel format.
imMediaPending Return from imGetSourceVideo or imCreateAsyncImporter if the importer is still processing the file and cannot return video frames yet.
imDRMControlled Return from imOpenFile8 if the file cannot be opened because it is under rights management.
imActivationFailed Activation of a component failed (usually due to user cancellation). This is used by Premiere Elements.
imFrameNotFound New in CS4. Return if an importer could not find the requested frame (typically used with async importers)
imBadHeader New in CS5. The file cannot be opened because of a header error
imUnsupportedCompression New in CS5. The file has a compression type that the importer does not support
imFileOpenFailed New in CS5. The importer was unable to open the file on disk
imFileHasNoImportableStreams New in CS5. The file has no audio or video stream
imFileReadFailed New in CS5. A read from an open file failed
imUnsupportedAudioFormat New in CS5. The importer cannot import something in the audio format
imUnsupportedVideoBitDepth New in CS5. The video bit depth of this file is unsupported by the importer
imDecompressionError New in CS5. The importer hit an error decompressing the audio or video

continues on next page

153

Premiere Pro C++ SDK Guide, Release 24.0

Table 1 – continued from previous page
Return Code Reason
imInvalidPreferences New in CS5. Invalid prefs data was passed to the importer
inFileNotAvailable New in CS5. Return from imQueryContentState if the file/stream is no longer available because it is offline or deleted
imRequiresProtectedContent New in CS5.5. Return from imInit if the importer depends on a library that has not been activated yet.
imNoCaptions New in CC. Return from imInitiateAsyncClosedCaptionScan if the clip has no closed captions, or return from imGetNextClosedCaption when there are no more captions.
imCancel Return from imGetPrefs8 if user cancels or the plugin cannot open the file (custom/synthetic importer).
imBadFormatIndex Return this when given an out of range format index, and from imGetIndFormat when plugin has no more formats to enumerate.
imIsCacheable Return from imInit if a plugin does not need to be called to initialize every time Premiere is launched. This will help reduce the time to launch the application.

154 Chapter 40. Return Codes

CHAPTER

FORTYONE

STRUCTURES

Structure Sent with selector
imAcceleratorRec imRetargetAccelerator
imAnalysisRec imAnalysis
imAsyncImporterCreationRec imCreateAsyncImporter
imAudioInfoRec7 imGetInfo8 (member of imFileInfoRec8)
imCalcSizeRec imCalcSize8
imCheckTrimRec imCheckTrim8
imClipFrameDescriptorRec imSelectClipFrameDescriptor
imCompleteAsyncClosedCaptionScanRec imCompleteAsyncClosedCaptionScan
imIndColorProfileRec imGetIndColorProfile
imCopyFileRec imCopyFile
imDataRateAnalysisRec imDataRateAnalysis
imDeferredProcessingRec imDeferredProcessing
imDeleteFileRec imDeleteFile
imFileAccessRec8 imGetInfo8 and imGetPrefs8
imFileAttributesRec imGetFileAttributes
imFileInfoRec8 imGetInfo8
imFileOpenRec8 imOpenFile8
imFileRef

• imAnalysis,
• imDataRateAnalysis,
• imOpenFile8,
• imQuietFile,
• imCloseFile,
• imGetTimeInfo8,
• imSetTimeInfo8,
• imImportImage ,
• imImportAudio7

continues on next page

155

Premiere Pro C++ SDK Guide, Release 24.0

Table 1 – continued from previous page
Structure Sent with selector
imFileSpec

• imGetInfo8,
• imGetPrefs8,
• imSaveFile8,
• imDeleteFile,
• imTrimFile8

Member of:
• imFileAccessRec8,
• imSaveFileRec8,
• imDeleteFileRec,
• imTrimFileRec8

imFrameFormat imGetSourceVideo (member of imSourceVideoRec)
imGetNextClosedCaptionRec imGetNextClosedCaption
imGetPrefsRec imGetPrefs8
imImageInfoRec imGetInfo8 (member of imFileInfoRec8)
imImportAudioRec7 imImportAudio7
imImportImageRec imImportImage
imImportInfoRec imInit
imIndFormatRec imGetIndFormat
imIndPixelFormatRec imGetIndPixelFormat
imInitiateAsyncClosedCaptionScanRec imInitiateAsyncClosedCaptionScan
imMetaDataRec imGetMetaData and imSetMetaData
imPeakAudioRec imGetPeakAudio
imPreferredFrameSizeRec imGetPreferredFrameSize
imQueryContentStateRec imQueryContentState
imQueryDestinationPathRec imQueryDestinationPath
imQueryInputFileListRec imQueryInputFileList
imQueryStreamLabelRec imQueryStreamLabel
imRollCrawlInfoRec imGetRollCrawlInfo
imRollCrawlRenderRec imRollCrawlRenderPage
imSaveFileRec8 imSaveFile8
imSourceVideoRec imGetSourceVideo
imSubTypeDescriptionRec imGetSubTypeNames
imTimeInfoRec8 imGetTimeInfo8 and imSetTimeInfo8
imTrimFileRec8 imTrimFile8

156 Chapter 41. Structures

CHAPTER

FORTYTWO

STRUCTURE DESCRIPTIONS

42.1 imAcceleratorRec

Selector: imRetargetAccelerator

Describes the path to the new media and new accelerator created when the Project Manager copies media and its
accelerator.

typedef struct {
const prUTF16Char *inOriginalPath;
const prUTF16Char *inAcceleratorPath;

} imAcceleratorRec;

inOriginalPath The unicode path and name of the copied media.
inAcceleratorPath The unicode path and name of the copied accelerator.

42.2 imAnalysisRec

Selector: imAnalysis

Sending back analysis data is a two step process. First, set buffersize to the size of your character buffer and return
imNoErr.

Premiere will immediately send imAnalysis again; populate the buffer with text. Previously-stored preferences and
privateData are returned in this structure.

typedef struct {
void *privatedata;
void *prefs;
csSDK_int32 buffersize;
char *buffer;
csSDK_int32 *timecodeFormat;

} imAnalysisRec;

157

Premiere Pro C++ SDK Guide, Release 24.0

privatedata Instance data from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data from imGetPrefs8 (setup dialog info).
buffersize Set to the desired size and return imNoErr to Premiere, which will re-size and call the plugin again

with the imGetPrefs8 selector.
buffer Text buffer. Terminate lines with line endings (CR and LF).
timecodeFormatPreferred timecode format, sent by the host.

42.3 imAsyncImporterCreationRec

Selector: imCreateAsyncImporter

Create an asynchronous importer object using the data provided, and store it here.

typedef struct {
void *inPrivateData;
void *inPrefs;
AsyncImporterEntry outAsyncEntry;
void *outAsyncPrivateData;

}

inPrivateData Instance data from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings from imGetPrefs8 (setup dialog info).
outAsyncEntry Provide the entry point for async selectors sent to the asynchronous importer object.
outAsyncPrivateData PrivateData for the asynchronous importer object.

42.4 imAudioInfoRec7

Selector: imGetInfo8 (member of imFileInfoRec8)

Audio data properties of the file (or of the data you will generate, if synthetic).

typedef struct {
csSDK_int32 numChannels;
float sampleRate;
PrAudioSampleType sampleType;

}

numChannelsNumber of audio channels in the audio stream.
Either 1, 2, or 6.

sampleRateIn hertz.
sampleTypeThis is for informational use only, to disclose the format of the audio on disk, before it is converted to

32-bit float, uninterleaved, by the importer.
The audio sample types are listed in Universals.

158 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.5 imCalcSizeRec

Selector: imCalcSize8

Asks the importer for an estimate of disk space used by the clip, given the provided trim boundaries.

typedef struct {
void *privatedata;
void *prefs;
csSDK_int32 trimIn;
csSDK_int32 duration;
prInt64 sizeInBytes;
csSDK_int32 scale;
csSDK_int32 sampleSize;

} imCalcSizeRec;

privatedataInstance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
trimIn In point of the trimmed clip the importer should calculate the size for, in the timebase specified by

scale over sampleSize.
duration Duration of the trimmed clip the importer should calculate the size for.

If 0, then the importer should calculate the size of the untrimmed clip.
sizeInBytesReturn the calculated size in bytes.
scale The frame rate of the video clip, represented as scale over sampleSize.
sampleSize

42.6 imCheckTrimRec

Selector: imCheckTrim8

Provides the requested trim boundaries to the importer, and allows adjusted trim boundaries to be passed back to
Premiere.

typedef struct {
void *privatedata;
void *prefs;
csSDK_int32 trimIn;
csSDK_int32 duration;
csSDK_int32 keepAudio;
csSDK_int32 keepVideo;
csSDK_int32 newTrimIn;
csSDK_int32 newDuration;
csSDK_int32 scale;
csSDK_int32 sampleSize;

} imCheckTrimRec;

42.5. imCalcSizeRec 159

Premiere Pro C++ SDK Guide, Release 24.0

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
trimIn Requested in point of the trimmed clip, in the timebase specified by scale over sampleSize.
duration Requested duration. If 0, then the request is to leave the clip untrimmed, and at the current duration
keepAudio If non-zero, the request is to keep the audio in the trimmed result.
keepVideo If non-zero, the request is to keep the video in the trimmed result.
newTrimIn Return the acceptable in point of the trimmed clip. It must be at or before the requested in point.
newDuration Return the acceptable duration. newTrimIn + newDuration must be at or after the trimIn + duration.
scale The frame rate of the video clip, represented as scale over sampleSize.
sampleSize

42.7 imClipFrameDescriptorRec

Selector: imSelectClipFrameDescriptor

Based on the request in inDesiredClipFrameDescriptor and the importer’s Source Settings, modify
outBestFrameDescriptor as needed to describe what format the importer will provide.

typedef struct {
void* inPrivateData;
void* inPrefs;
ClipFrameDescriptor inDesiredClipFrameDescriptor;
ClipFrameDescriptor outBestFrameDescriptor;

} imClipFrameDescriptorRec;

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
inDesiredClipFrameDescriptorRequested frame properties, as described by the host.

The ClipFrameDescriptor struct is defined in PrSDKImporterShared.h.
outBestFrameDescriptorFrame properties to be produced, filled in with initial guesses

42.8 imCompleteAsyncClosedCaptionScanRec

Selector: imCompleteAsyncClosedCaptionScan

This structure is passed to provide one last chance to cleanup and dispose of inAsyncCaptionScanPrivateData,
and to mark whether the closed caption scan completed without error.

typedef struct {
void* inPrivateData;
const void* inPrefs;
void* inAsyncCaptionScanPrivateData;
prBool inScanCompletedWithoutError;

} imCompleteAsyncClosedCaptionScanRec;

160 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
inAsyncCaptionScanPrivateDataCleanup and dispose of any data here that was allocated in

imInitiateAsyncClosedCaptionScan or imGetNextClosedCaption.
This data should not be accessed after returning from this call.

inScanCompletedWithoutErrorSet to true if no error.

42.9 imIndColorProfileRec

Selector: imGetIndColorProfile

Deprecated as of 13.0. Describes a color profile supported by a clip.

The first time imGetIndColorProfile is sent, inDestinationBuffer will be NULL, and ioBufferSize will be
0.

Set ioBufferSize to the required size for the buffer, and the host will allocate the memory and call the importer again,
with a valid inDestinationBuffer, and ioBufferSize set to the value just provided by the importer.

typedef struct {
void *inPrivateData;
csSDK_int32 ioBufferSize;
void *inDestinationBuffer;
PrSDKString outName;

} imIndColorProfileRec;

42.10 imCopyFileRec

Selector: imCopyFile

Describes how to copy a clip. Also provides a callback to update the progress bar and check if the user has cancelled.

typedef struct {
void *inPrivateData;
csSDK_int32 *inPrefs;
const prUTF16Char *inSourcePath;
const prUTF16Char *inDestPath;
importProgressFunc inProgressCallback;
void *inProgressCallbackID;

} imTrimFileRec;

inPrivateDataInstance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings gathered during imGetPrefs8 (setup dialog).
inSourcePath Full unicode path of the source file.
inDestPath Full unicode path of the destination file.
inProgressCallbackimportProgressFunc callback to call repeatedly to provide progress and to check for cancel by user.

May be a NULL pointer, so make sure the function pointer is valid before calling.
inProgressCallbackIDPass to progressCallback.

42.9. imIndColorProfileRec 161

Premiere Pro C++ SDK Guide, Release 24.0

42.11 imDataRateAnalysisRec

Selector: imDataRateAnalysis

Specify the desired buffersize, return to Premiere with imNoErr; upon the next call fill buffer with imDataSamples,
and specify a base data rate for audio (if any).

This structure is used like imAnalysisRec.

typedef struct {
void *privatedata;
void *prefs;
csSDK_int32 buffersize;
char *buffer;
csSDK_int32 baserate;

} imDataRateAnalysisRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
buffersize The size of the buffer you request from Premiere prior to passing data back data in buffer.
buffer Pointer to the analysis buffer to be filled with imDataSamples (see structure below).
baserate Audio data rate (bytes per second) of the file.

typedef struct {
csSDK_uint32 sampledur;
csSDK_uint32 samplesize;

} imDataSample;

sampledur Duration of one sample in video timebase, in samplesize increments; set the high bit if this is a
keyframe.

samplesize Size of this sample in bytes.

42.12 imDeferredProcessingRec

Selector: imDeferredProcessing

Describes the current progress of the deferred processing on the clip referred to by inPrivateData.

typedef struct {
void *inPrivateData;
float outProgress;
char outInvalidateFile;
char outCallAgain;

} imDeferredProcessingRec;

162 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

inPrivateData Instance data gathered from imGetInfo8 or imGetPrefs8.
outProgress Set this to the current progress, from 0.0 to 1.0.
outInvalidateFile The importer has updated information about the file.
outCallAgain Set this to true to request that the importer be called again immediately.

42.13 imDeleteFileRec

Selector: imDeleteFile

Describes the file to be deleted.

typedef struct {
csSDK_int32 filetype;
const prUTF16Char deleteFile;

} imDeleteFileRec;

filetype The file’s unique four character code, defined in the IMPT resource
deleteFile Specifies the name (and path) of the file to be deleted.

42.14 imFileAccessRec8

Selectors: imGetInfo8 and imGetPrefs8

Describes the file being imported.

typedef struct {
void *importID;
csSDK_int32 filetype;
const prUTF16Char *filepath;
imFileRef fileref;
PrMemoryPtr newfilename;

} imFileAccessRec;

importIDUnique ID provided by Premiere. Do not modify!
filetypeThe file’s unique four character code, defined in the IMPT resource.
filepathThe unicode file path and name.
fileref A Windows HANDLE. Premiere does not overload this value by using it internally, although setting it to

the constant kBadFileRef may cause Premiere to think the file is closed.
This value is always valid.

newfilenameIf the file is synthetic, the importer can specify the displayable name here as a prUTF16Char string during
imGetPrefs8.

42.13. imDeleteFileRec 163

Premiere Pro C++ SDK Guide, Release 24.0

42.15 imFileAttributesRec

Selector: imGetFileAttributes

New in Premiere Pro 3.1. Provide the clip creation date.

typedef struct {
prDateStamp creationDateStamp;
csSDK_int32 reserved[40];

} imFileAttributesRec;

creationDateStamp Structure to store when the clip was created

42.16 imFileInfoRec8

Selector: imGetInfo8

Describes the clip, or the stream with the ID streamIdx. Set the clip or stream attributes from the file header or data
source. Create and store any privateData.

When a synthetic clip is created, and the user provides the desired resolution, frame rate, pixel aspect ratio, and audio
sample rate in the New Synthetic dialog, these values will be pre-initialized by Premiere.

If importing stereoscopic footage, import the left-eye video channel for streamID 0, and the right-eye video channel for
streamID 1.

typedef struct {
char hasVideo;
char hasAudio;
imImageInfoRec vidInfo;
csSDK_int32 vidScale;
csSDK_int32 vidSampleSize;
csSDK_int32 vidDuration;
imAudioInfoRec7 audInfo;
PrAudioSample audDuration;
csSDK_int32 accessModes;
void *privatedata;
void *prefs;
char hasDataRate;
csSDK_int32 streamIdx;
char streamsAsComp;
prUTF16Char streamName[256];
csSDK_int32 sessionPluginID;
char alwaysUnquiet;
char unused;
prUTF16Char filePath[2048];
char canProvidePeakData;
char mayBeGrowing;

} imFileInfoRec8;

164 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

hasVideo If non-zero, the file contains video.
hasAudio If non-zero, the file contains audio.
vidInfo If there is video in the file, fill out the imImageInfoRec

structure (e.g. height, width, alpha info, etc.).
vidScale The frame rate of the video, represented as scale over

sampleSize.
vidSampleSize
vidDuration The total number of frames of video, in the video time-

base.
audInfo If there is audio in the file, fill out the imAudioInfoRec7

structure.
audDuration The total number of audio sample frames.
accessModes The access mode of this file. Use one of the following

constants:
• kRandomAccessImport - This file can be read by

random access (default)
• kSequentialAudioOnly - When accessing au-

dio, only sequential reads allowed (for variable bit
rate files)

• kSequentialVideoOnly - When accessing
video, only sequential reads allowed

• kSequentialOnly - Both sequential audio and
video

• kSeparateSequentialAudio - Both random
access and sequential access.

This setting allows audio to be retrieved for scrubbing or
playback even during audio conforming.

privatedata Private instance data. Allocate a handle using Pre-
miere’s memory functions and store it here. Premiere
will return the handle with subsequent selectors.

prefs Clip Source Settings data gathered from imGetPrefs8
(setup dialog info). When a synthetic clip is
created using File > New, imGetPrefs8 is sent
beforeimGetInfo8 so this settings structure will al-
ready be valid.

hasDataRate If set, the importer can read or generate data
rate information for this file and will be sent
imDataRateAnalysis.

streamIdx The Premiere-specified stream index number. Only use-
ful if clip uses multiple streams.

streamsAsComp If multiple streams and this is stream zero, indicate
whether to import as a composition or multiple clips.

streamName Optional. The unicode name of this stream if there are
multiple streams.
New in Premiere Pro 3.1, an importer may use this to
set the clip name based on metadata rather than the file-
name.
The importer should set imImportInfoRec.
canSupplyMetadataClipName to true, and fill
out the name here.

sessionPluginID This ID should be used in the File Registration Suite
for registering external files (such as textures, logos, etc)
that are used by an importer instance but do not appear
as footage in the Project Window.
Registered files will be taken into account when trim-
ming or copying a project using the Project Manager.
The sessionPluginID is valid only for the call that it
is passed on.

alwaysUnquiet Set to non-zero to tell Premiere if the clip should always
be unquieted immediately when the application regains
focus.

filepath Added in Premiere Pro 4.1. For clips that have audio in
files separate from the video file, set the filename here, so
that UMIDs can properly be generated when exporting
sequences to AAF.

canProvidePeakData New in Premiere Pro CS6. This allows an importer to
toggle whether or not it wants to provide peak audio data
on a clip-by-clip basis.
It defaults to the setting set in imImportInfoRec.
canProvidePeakAudio. NOTE: Do not attempt to use
this setting, with growing files.

mayBeGrowing New in Premiere Pro CS6.0.2. Set to non-zero if this clip
is growing and should be refreshed at the interval set in
the Media Preferences.

42.16. imFileInfoRec8 165

Premiere Pro C++ SDK Guide, Release 24.0

42.17 imFileOpenRec8

Selector: imOpenFile8

The file Premiere wants the importer to open.

typedef struct {
imFileAccessRec8 fileinfo;
void *privatedata;
csSDK_int32 reserved;
PrFileOpenAccess inReadWrite;
csSDK_int32 inImporterID;
csSDK_size_t outExtraMemoryUsage;
csSDK_int32 inStreamIdx;

} imFileOpenRec8;

fileinfo imFileAccessRec8 describing the incoming file.
privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
reserved Do not use.
inReadWrite The file should be opened with the access mode specified:

Either kPrOpenFileAccess_ReadOnly or kPrOpenFileAccess_ReadWrite
inImporterID Can be used as the ID for calls in the PPix Cache Suite.
outExtraMemoryUsageNew in CS5. If the importer uses memory just by being open, which cannot otherwise be regis-

tered in the cache, put the size in bytes in this field.
inStreamIdx New in CS6. If the clip has multiple streams (for stereoscopic video or otherwise), this ID

differentiates between them.

42.18 imFileRef

Selectors:

• imAnalysis,

• imDataRateAnalysis,

• imOpenFile8,

• imQuietFile,

• imCloseFile,

• imGetTimeInfo8,

• imSetTimeInfo8,

• imImportImage,

• imImportAudio7

166 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

A file HANDLE on Windows, or a void* on MacOS.

imFileRef is also a member of imFileAccessRec.

Use OS-specific functions, rather than ANSI file functions, when manipulating imFileRef.

42.19 imFrameFormat

Selector: imGetSourceVideo (member of imSourceVideoRec)

Describes the frame dimensions and pixel format.

typedef struct {
csSDK_int32 inFrameWidth;
csSDK_int32 inFrameHeight;
PrPixelFormat inPixelFormat;

} imFrameFormat;

inFrameWidth The frame dimensions requested.
inFrameHeight
inPixelFormat The pixel format of the frame requested.

42.20 imGetAudioChannelLayoutRec

Selector: imGetAudioChannelLayout

The importer should label each audio channel in the clip being imported.

If no labels are specified, the channel layout will be assumed to be discrete.

typedef struct {
void* inPrivateData;
PrAudioChannelLabel outChannelLabels[kMaxAudioChannelCount];

} imGetAudioChannelLayoutRec;

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
outChannelLabelsA valid audio channel label should be assigned for each channel in the clip.

Labels are defined in the Audio Suite.

42.19. imFrameFormat 167

Premiere Pro C++ SDK Guide, Release 24.0

42.21 imGetNextClosedCaptionRec

Selector: imGetNextClosedCaption

This structure provides private data allocated in imInitiateAsyncClosedCaptionScan, and should be filled out to
pass back a closed caption, it’s time, format, size, and overall progress in the closed caption scan.

typedef struct {
void* inPrivateData;
const void* inPrefs;
void* inAsyncCaptionScanPrivateData;
float outProgress;
csSDK_int64 outScale;
csSDK_int64 outSampleSize;
csSDK_int64 outPosition;
PrClosedCaptionFormat outClosedCaptionFormat;
PrMemoryPtr outCaptionData;
prUTF8Char outTTMLData[kTTMLBufferSize];
csSDK_size_t ioCaptionDataSize;

} imGetNextClosedCaptionRec;

168 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

inPrivatedata Instance data gathered from imGetInfo8 or
imGetPrefs8.

inPrefs Clip Source Settings gathered from imGetPrefs8
(setup dialog info).

inAsyncCaptionScanPrivateData This provides any private data that was allocated in
imInitiateAsyncClosedCaptionScan.

outProgress Update this value to denote the current progress iterating
through all the captions. Valid values are between 0.0
and 1.0.

outScale The timebase of outPosition, represented as scale over
sampleSize.

outSampleSize
outPosition The position of the closed caption.
outClosedCaptionFormat The format of the closed captions. One of the following:

• kPrClosedCaptionFormat_Undefined
• kPrClosedCaptionFormat_CEA608 - CEA-608

byte stream
• kPrClosedCaptionFormat_CEA708 - CEA-708

byte stream (may contain 608 data wrapped in
708)

• kPrClosedCaptionFormat_TTML - W3C
TTML string that conforms to the W3C
Timed Text Markup Language (TTML)
1.0: http://www.w3.org/TR/ttaf1-dfxp or
optionally conforming to SMPTE ST 2052-
1:2010: hhttp://store.smpte.org/, or option-
ally conforming to EBU Tech 3350 http:
//tech.ebu.ch/webdav/site/tech/shared/tech/).

If the TTML string contains tunneled data (e.g. CEA-
608 data), then it is preferred that the plugin provide
that through the appropriate byte stream format (e.g.
kPrClosedCaptionFormat_CEA608).

outCaptionData Memory location to where the plugin should write the
closed caption bytes, if providing CEA-608 or CEA-708.

outTTMLData UTF-8 String of valid W3C TTML data.
The entire string may be split into substrings (e.g. line
by line) and the host will concatenate and decode them
(only used when outCaptionData is kPrClosedCaption-
Format_TTML).

ioCaptionDataSize Size of outCaptionData buffer (in bytes) allocated from
the host. The importer should set this variable to the
actual number of bytes that were written to outCaption-
Data, or the length of the string (characters, not bytes)
pointed by outTTMLData.

42.21. imGetNextClosedCaptionRec 169

http://www.w3.org/TR/ttaf1-dfxp/
http://store.smpte.org/
http://tech.ebu.ch/webdav/site/tech/shared/tech/
http://tech.ebu.ch/webdav/site/tech/shared/tech/

Premiere Pro C++ SDK Guide, Release 24.0

42.22 imGetPrefsRec

Selector: imGetPrefs8

Contains settings/prefs data gathered from (or defaults to populate) a setup dialog.

If you are creating media, you can may generate a video preview that includes the background frame from the timeline.

typedef struct {
char *prefs;
csSDK_int32 prefsLength;
char firstTime;
PrTimelineID timelineData;
void *privatedata;
TDB_TimeRecord tdbTimelineLocation;
csSDK_int32 sessionPluginID;
csSDK_int32 imageWidth;
csSDK_int32 imageHeight;
csSDK_uint32 pixelAspectNum;
csSDK_uint32 pixelAspectDen;
csSDK_int32 vidScale;
csSDK_int32 vidSampleSize;
float sampleRate;

} imGetPrefsRec;

prefs A pointer to a private structure (which you allocate) for storing Clip Source Settings.
prefsLengthPrior to storing anything in the prefs member, set prefsLength to the size of your structure and return

imNoErr; Premiere will re-size and call the plugin again with imGetPrefs8.
firstTimeIf set, imGetPrefs8 is being sent for the first time.

Instead, check to see if prefs has been allocated. If not, imGetPrefs8 is being sent for the first time. Set
up default values for the prefsLength buffer and present any setup dialog.

timelineDataCan be passed to getPreviewFrameEx callback along with tdbTimelineLocation to get a frame from the
timeline beneath the current clip or timeline location. This is useful for titler plugins.

privatedataPrivate instance data.
Allocate a handle using Premiere’s memory functions and store it here, if not already allocated in
imGetInfo8.
Premiere will return the handle with subsequent selectors.

tdbTimelineLocationCan be passed to getPreviewFrameEx callback along with timelineData to get a frame from the timeline
beneath the current clip or timeline location. This is useful for titler plugins.

sessionPluginIDThis ID should be used in the File Registration Suite for registering external files (such as textures, logos,
etc) that are used by a importer instance but do not appear as footage in the Project Window.
Registered files will be taken into account when trimming or copying a project using the Project Manager.
The sessionPluginID is valid only for the call that it is passed on.

imageWidthNew in CS5. The native resolution of the video.
imageHeight
pixelAspectNumNew in CS5. The pixel aspect ratio of the video.
pixelAspectDen
vidScaleNew in CS5. The frame rate of the video, represented as scale over sampleSize.
vidSampleSize
sampleRateNew in CS5. Audio sample rate.

170 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.23 imImageInfoRec

Selector: imGetInfo8 (member of imFileInfoRec8)

Describes the video to be imported.

typedef struct {
csSDK_int32 imageWidth;
csSDK_int32 imageHeight;
csSDK_uint16 pixelAspectV1;
csSDK_uint16 depth;
csSDK_int32 subType;
char fieldType;
char fieldsStacked;
char reserved_1;
char reserved_2;
char alphaType;
matteColRec matteColor;
char alphaInverted;
char isVectors;
char drawsExternal;
char canForceInternalDraw;
char dontObscure;
char isStill;
char noDuration;
char reserved_3;
csSDK_uint32 pixelAspectNum;
csSDK_uint32 pixelAspectDen;
char isRollCrawl;
char reservedc[3];
csSDK_int32 importerID;
csSDK_int32 supportsAsyncIO;
csSDK_int32 supportsGetSourceVideo;
csSDK_int32 hasPulldown;
csSDK_int32 pulldownCadence;
csSDK_int32 posterFrame;
csSDK_int32 canTransform;
csSDK_int32 interpretationUncertain;
csSDK_int32 colorProfileSupport;
PrSDKString codecDescription;
csSDK_int32 colorSpaceSupport;
PrTime frameRate;
prBool hasEmbeddedLUT;
csSDK_int32 reserved[12];

} imImageInfoRec;

42.23. imImageInfoRec 171

Premiere Pro C++ SDK Guide, Release 24.0

42.23.1 Plug-in Info

importerID Can be used as the ID for calls in the PPix Cache Suite.
supportsAsyncIO Set this to true if the importer supports imCreateAsyncImporter and ai* selectors.
supportsGetSourceVideo Set this to true if the importer supports the imGetSourceVideo selector.

42.23.2 Bounds Info

imageWidthFrame width in pixels.
imageHeightFrame height in pixels.
pixelAspectNumThe pixel aspect ratio numerator and denominator.

For synthetic importers, these are by default the PAR of the project.
Only set this if you need a specific PAR for the geometry of the synthesized footage to be correct.

pixelAspectDen

172 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.23.3 Time Info

isStill If set, the file contains a single frame, so only one frame
will be cached.

noDuration One of the following:
• imNoDurationFalse
• imNoDurationNoDefault
• imNoDurationStillDefault - use the default

duration for stills, as set by the user in the Prefer-
ences

• imNoDurationNoDefault - the importer will
supply it’s own duration

This is primarily for synthetic clips, but can be used for
importing non-sequential still images.

isRollCrawl Set to non-zero value to specify this clip is a rolling or
crawling title.
This allows a player to optionally use the RollCrawl Suite
to get sections of this title for real-time playback.

hasPulldown Set this to true if the clip contains NTSC film footage
with 3:2 pulldown.

pulldownCadence Set this to the enumerated value that describes the pull-
down of the clip:
importer_PulldownPhase_NO_PULLDOWN
2:3 cadences:

• importer_PulldownPhase_WSSWW
• importer_PulldownPhase_SSWWW
• importer_PulldownPhase_SWWWS
• importer_PulldownPhase_WWWSS
• importer_PulldownPhase_WWSSW

24pa cadences:
• importer_PulldownPhase_WWWSW
• importer_PulldownPhase_WWSWW
• importer_PulldownPhase_WSWWW
• importer_PulldownPhase_SWWWW
• importer_PulldownPhase_WWWWS

posterFrame New in Premiere Pro CS3. Poster frame number to be
displayed.
If not specified, the poster frame will be the first frame
of the clip.

42.23. imImageInfoRec 173

Premiere Pro C++ SDK Guide, Release 24.0

174 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.23.4 Format Info

depth Bits per pixel. This currently has no effect and should
be left unchanged.

subType The four character code of the file’s codec; associates
files with MAL plugins. For uncompressed files, set to
imUncompressed.

fieldType One of the following:
• prFieldsNone
• prFieldsUpperFirst
• prFieldsLowerFirst
• prFieldsUnknown

fieldsStacked Fields are present, and not interlaced. Deprecated since
Premiere Pro 7.0.

alphaType Used when depth is 32 or greater. One of the following:
• alphaNone - no alpha channel (the default)
• alphaStraight - straight alpha channel
• alphaBlackMatte - premultiplied with black
• alphaWhiteMatte - premultiplied with white
• alphaArbitrary - premultiplied with the color

specified in matteColor
• alphaOpaque - for video with alpha channel pre-

filled to opaque.
This gives Premiere the opportunity to make an opti-
mization by skipping the fill to opaque that would other-
wise be performed if alphaNone was set.

matteColor Newly used in Premiere Pro CS3. Used to specify matte
color if alphaType is set to alphaArbitrary.

alphaInverted If non-zero, alpha is treated as inverted (e.g. black be-
comes transparent).

canTransform Set to non-zero value to specify this importer handles
resolution independent files and can apply a transform
matrix.
The matrix will be passed during the import request in
imImportImageRec.transform.
This code path is currently not called by Premiere Pro.
After Effects uses this call to import Flash video.

interpretationUncertain Use an ‘or’ operator to combine any of the following
flags:

• imPixelAspectRatioUncertain
• imFieldTypeUncertain
• imAlphaInfoUncertain
• imEmbeddedColorProfileUncertain

colorProfileSupport Deprecated as of 13.0. New in CS5.5.
Set to imColorProfileSupport_Fixed to support
color management. If the importer is uncertain, it should
use interpretationUncertain above instead.

codecDescription Text description of the codec in use.
ColorProfileRec New in 13.0; describes the color profile being used by

the importer, with this media.
colorSpaceSupport Set to imColorSpaceSupport_Fixed to support color

management.
If importer is uncertain, it should use
imColorSpaceSupport_None above instead.

hasEmbeddedLUT Set to kPrTrue if media contains embedded LUT. Else
set to kPrFalse.

42.23. imImageInfoRec 175

Premiere Pro C++ SDK Guide, Release 24.0

42.23.5 Unused

pixelAspectV1 Obsolete. Maintained for backwards compatability.
Plugins written for the Premiere 6.x or Premiere Pro API should use pixelAspectNum and
pixelAspectDen.

isVectors Use canTransform instead.
drawsExternal
canForceInternalDraw
dontObscure

42.24 imImportAudioRec7

Selector: imImportAudio7

Describes the audio samples to be returned, and contains an allocated buffer for the importer to fill in.

Provide the audio in 32-bit float, uninterleaved audio format.

typedef struct {
PrAudioSample position;
csSDK_uint32 size;
float **buffer;
void *privatedata;
void *prefs;

} imImportAudioRec7;

positionIn point, in audio sample frames.
The importer should save the out point of the request in privatedata, because if position is less than zero,
then the audio request is sequential, which means the importer should return contiguous samples from the
last imImportAudio7 call.

size The number of audio sample frames to import.
buffer An array of buffers, one buffer for each channel, with length specified in size.

These buffers are allocated by the host application, for the plugin to fill in with audio data.
privatedataInstance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered from imGetPrefs8 (setup dialog info).

42.25 imImportImageRec

Selector: imImportImage

Describes the frame to be returned.

typedef struct {
csSDK_int32 onscreen;
csSDK_int32 dstWidth;

(continues on next page)

176 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

csSDK_int32 dstHeight;
csSDK_int32 dstOriginX;
csSDK_int32 dstOriginY;
csSDK_int32 srcWidth;
csSDK_int32 srcHeight;
csSDK_int32 srcOriginX;
csSDK_int32 srcOriginY;
csSDK_int32 unused2;
csSDK_int32 unused3;
csSDK_int32 rowbytes;
char *pix;
csSDK_int32 pixsize;
PrPixelFormat pixformat;
csSDK_int32 flags;
prFieldType fieldType;
csSDK_int32 scale;
csSDK_int32 sampleSize;
csSDK_int32 in;
csSDK_int32 out;
csSDK_int32 pos;
void *privatedata;
void *prefs;
prRect alphaBounds;
csSDK_int32 applyTransform;
float transform[3][3];
prRect destClipRect;

} imImportImageRec;

42.25.1 Bounds Info (for imImportImageRec)

dstWidth Width of the destination rectangle (in pixels).
dstHeight Height of the destination rectangle (in pixels).
dstOriginX Origin X point (0 indicates the frame is drawn offscreen).
dstOriginY Origin Y point (0 indicates the frame is drawn offscreen).
srcWidth The same number returned as dstWidth.
srcHeight The same number returned as dstHeight.
srcOriginX The same number returned as dstOriginX.
srcOriginY The same number returned as dstOriginY.

42.25. imImportImageRec 177

Premiere Pro C++ SDK Guide, Release 24.0

42.25.2 Frame Info

rowbytesThe number of bytes in a single row of pixels.
pix Pointer to a buffer into which the importer should draw. Allocated based on information from the

imGetInfo8.
pixsizeThe number of pixels. rowbytes * height.
pixformatThe pixel format Premiere requests.
flags imDraftMode - Draw quickly if possible, using a faster and possibly less accurate algorithm.

This may be passed when playing from the timeline.
imSamplesAreFields - Most importers will ignore as Premiere already scales in/out/scale to account for
fields, but if you need to know that this has occurred (because maybe you measure something in ‘frames’),
check this flag.
Also, may we suggest considering measuring in seconds instead of frames?

fieldTypeIf the importer can swap fields, it should render the frame with the given field dominance: either
imFieldsUpperFirst or imFieldsLowerFirst.

scale The frame rate of the video, represented as scale over sampleSize.
sampleSize
in In point, based on the timebase defined by scale over sampleSize..
out Out point, based on the timebase defined by scale over sampleSize..
pos Import position, based on the above timebase.

API bug: Synthetic and custom importers will always receive zero.
Thus, adjusting the in point on the timeline will not offset the in point.

privatedataInstance data gathered during imGetInfo or imGetPrefs.
prefs Clip Source Settings data gathered during imGetPrefs (setup dialog info).
alphaBoundsThis is the rect outside of which the alpha is always 0. Simply do not alter this field if the alpha bounds

match the destination bounds.
If set, the alpha bounds must be contained by the destination bounds. This is only currently used when a
plugin calls ppixGetAlphaBounds, and not currently used by any native plugins.

applyTransformNew in After Effects CS3. Not currently provided by Premiere.
If non-zero, the host is requesting that the importer apply the transform specified in transform and dest-
ClipRect before returning the resulting image in pix.

transformNew in After Effects CS3. Not currently provided by Premiere. The source to destination transform matrix.
destClipRectNew in After Effects CS3. Not currently provided by Premiere. Destination rect inside the bounds of the

pix buffer.

42.26 imImportInfoRec

Selector: imInit

Describes the importer’s capabilities to Premiere.

typedef struct {
csSDK_uint32 importerType;
csSDK_int32 canOpen;
csSDK_int32 canSave;
csSDK_int32 canDelete;
csSDK_int32 canResize;
csSDK_int32 canDoSubsize;
csSDK_int32 canDoContinuousTime;

(continues on next page)

178 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

csSDK_int32 noFile;
csSDK_int32 addToMenu;
csSDK_int32 hasSetup;
csSDK_int32 dontCache;
csSDK_int32 setupOnDblClk;
csSDK_int32 keepLoaded;
csSDK_int32 priority;
csSDK_int32 canAsync;
csSDK_int32 canCreate;
csSDK_int32 canCalcSizes;
csSDK_int32 canTrim;
csSDK_int32 avoidAudioConform;
prUTF16Char *acceleratorFileExt;
csSDK_int32 canCopy;
csSDK_int32 canSupplyMetadataClipName;
csSDK_int32 private;
csSDK_int32 canProvidePeakAudio;
csSDK_int32 canProvideFileList;
csSDK_int32 canProvideClosedCaptions;
prPluginID fileInfoVersion;

} imImportInfoRec;

42.26.1 Screen Info

noFile If set, this is a synthetic importer. The file reference will be zero.
addToMenu If set to imMenuNew, the importer will appear in the File > New menu.
canDoContinuousTimeIf set, the importer can render frames at arbitrary times and there is no set timecode. A color matte

generator or a titler would set this flag.
canCreate If set, Premiere will treat this synthetic importer as if it creates files on disk to be referenced for

frames and audio.
See Additional Details for more information on custom importers.

42.26.2 File Handling Flags

canOpen If set, the importer handles open and close operations. Set if the plugin needs to be called to handle
imOpenFile, imQuietFile, and imCloseFile.

canSave If set, the importer handles File > Save and File > Save As after a clip has been captured and must handle
the imSaveFile selector.

canDeleteIf set, the importer can delete its own files.
The plugin must handle the imDeleteFile selector.

canCalcSizesIf set, the importer can calculate the disk space used by a clip during imCalcSize.
An importer should support this call if it uses a tree of files represented as one top-level file to Premiere.

canTrim If set, the importer can trim files during imTrimFile.
canCopy Set this to true if the importer supports copying clips in the Project Manager.

42.26. imImportInfoRec 179

Premiere Pro C++ SDK Guide, Release 24.0

42.26.3 Setup Flags

hasSetup If set, the importer has a setup dialog. The dialog should be presented in response to imGetPrefs
setupOnDblClkIf set, the setup dialog should be opened whenever the user double clicks on a file imported by the

plugin the timeline or the project bin.

42.26.4 Memory Handling Flags

dontCache Unused.
keepLoaded If set, the importer plugin should never be unloaded.

Don’t set this flag unless it’s absolutely necessary (it usually isn’t).

42.26.5 Other

priority Determines priority levels for importers that handle the same filetype.
Importers with higher numbers will override importers with lower numbers.
For overriding importers that ship with Premiere, use a value of 100 or greater.
Higher-priority importers can defer files to lower-priority importers by returning imBadFile during
imOpenFile8 or imGetInfo8.

importTypeType identifier for the import module assigned based on the plugin’s IMPT resource.
Do not modify this field.

canProvideClosedCaptionsNew in Premiere Pro CC. Set this to true if the importer supports media with embedded closed cap-
tioning.

avoidAudioConformSet this to true if the importer supports fast audio retrieval and does not need the audio clips it imports
to be conformed.

canProvidePeakAudioNew in Premiere Pro CS5.5. Set this to true if your non-synthetic importer wants to provide peak audio
data using imGetPeakAudio.

acceleratorFileExtFill this prUTF16Char array of size 256 with the file extensions of accelerator files that the importer
creates and uses.

canSupplyMetadataClipNameAllows file based importer to set clip name from metadata.
Set this in imFileInfoRec8.streamName.

canProvideFileListNew in CS6. Set this to true if the importer will provide a list of all files for a copy operation in response
to imQueryInputFileList.

fileInfoVersionNew in CC 2014. This is used by an optimization in an internal importer. Do not use.

42.26.6 Unused (in imImportInfoRec)

canResize
canDoSubsize
canAsync

180 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.27 imIndFormatRec

Selector: imGetIndFormat

Describes the format(s) supported by the importer. Synthetic files can only have one format.

typedef struct {
csSDK_int32 filetype;
csSDK_int32 flags;
csSDK_int32 canWriteTimecode;
char FormatName[256];
char FormatShortName[32];
char PlatformExtension[256];
prBool hasAlternateTypes;
csSDK_int32 alternateTypes[kMaxAlternateTypes];
csSDK_int32 canWriteMetaData;

} imIndFormatRec;

filetype Unique four character code (fourcc) of the file.
flags Legacy mechanism for describing the importer capabilities.

Though the flags will still be honored for backward compatability, current and future im-
porters should not use these flags.
See table below for details.

canWriteTimecode If set, timecode can be written for this filetype.
FormatName[256] The descriptive importer name.
FormatShortName[256]The short name for the plugin, appears in the format menu.
PlatformExtension[256]List of all the file extensions supported by this importer.

If there’s more than one, separate with null characters.
hasAlternateTypesUnused
alternateTypes[kMaxAlternateTypes]Unused
canWriteMetaData New in 6.0. If set, imSetMetaData is supported for the filetype

The flags listed below are only for legacy plugins and should not be used.

Flag Usage
xfIsMovie Unused
xfCanReplace Unused
xfCanOpen Unused: Use imImportInfoRec.canOpen instead.
xfCanImport Unused: The PiPL resource describes the file as an importer.
xfIsStill Indicates that the importer handles still images.
xfIsSound Unused: Use imFileInfoRec.hasAudio instead.
xfCanWriteTimecodeIf set, the importer can respond to imGetTimecode and imSetTimecode.

Obsolete: use imIndFormatRec.canWriteTimecode instead.
xfCanWriteMetaDataWrites (and reads) metadata, specific to the importer’s four character code filetype.

Obsolete: use imIndFormatRec.canWriteMetaData instead.
xfCantBatchProcessUnused

42.27. imIndFormatRec 181

Premiere Pro C++ SDK Guide, Release 24.0

42.28 imIndPixelFormatRec

Selector: imGetIndPixelFormat

Describes the pixel format(s) supported by the importer.

typedef struct {
void *privatedata;
PrPixelFormat outPixelFormat;
const void* prefs;

} imIndPixelFormatRec;

privatedata Instance data from imGetInfo8 or imGetPrefs8.
outPixelFormat One of the pixel formats supported by the importer
prefs New in CC. Clip Source Settings data gathered during imGetPrefs8 (setup dialog).

42.29 imInitiateAsyncClosedCaptionScanRec

Selector: imInitiateAsyncClosedCaptionScan

Both imGetNextClosedCaption and imCompleteAsyncClosedCaptionScanmay be called from a different thread
from which imInitiateAsyncClosedCaptionScan was originally called.

To help facilitate this, outAsyncCaptionScanPrivateData can be allocated by the importer to be used for the upcoming
closed caption scan calls, which should then be deallocated in imCompleteAsyncClosedCaptionScan.

The estimated duration of all the closed captions can also be filled in.

This is useful for certain cases where the embedded captions contain many frames of empty data.

typedef struct {
void* privatedata;
void* prefs;
void* outAsyncCaptionScanPrivateData;
csSDK_int64 outScale;
csSDK_int64 outSampleSize;
csSDK_int64 outEstimatedDuration;

} imInitiateAsyncClosedCaptionScanRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered during imGetPrefs8 (setup dialog).
outAsyncCaptionScanPrivateDataThe importer can allocate instance data for this closed caption scan, and pass it

back here.
outScale New in CC October 2013. The frame rate of the video clip, represented as scale

over sampleSize.
outSampleSize
outEstimatedDuration New in CC October 2013. The estimated duration of all the captions, in the

above timescale

182 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.30 imMetaDataRec

Selector: imGetMetaData and imSetMetaData

Describes the metadata specific to a given four character code.

typedef struct {
void *privatedata;
void *prefs;
csSDK_int32 fourCC;
csSDK_uint32 buffersize;
char *buffer;

} imMetaDataRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered during imGetPrefs8 (setup dialog).
fourcc Fourcc code of the metadata chunk.
buffersize Size of the data in buffer.
buffer The metadata.

42.31 imPeakAudioRec

Selector: imGetPeakAudio

Describes the peak values of the audio at the specified position.

typedef struct {
void *inPrivateData;
void *inPrefs;
PrAudioSample inPosition;
float inSampleRate;
csSDK_int32 inNumSampleFrames;
float **outMaxima;
float **outMinima;

} imPeakAudioRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Instance data gathered during imGetPrefs8 (setup dialog).
inPosition The starting audio sample frame of the peak data.
inSampleRate The sample rate at which to generate the peak data.
inNumSampleFrames The number of sample frames in each buffer.
outMaxima An array of arrays to be filled with the maximum sample values.
outMinima An array of arrays to be filled with the minimum sample values.

42.30. imMetaDataRec 183

Premiere Pro C++ SDK Guide, Release 24.0

42.32 imPreferredFrameSizeRec

Selector: imGetPreferredFrameSize

Describes a frame size preferred by the importer.

typedef struct {
void *inPrivateData;
void *inPrefs;
PrPixelFormat inPixelFormat;
csSDK_int32 inIndex;
csSDK_int32 outWidth;
csSDK_int32 outHeight;

} imPreferredFrameSizeRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings data gathered during imGetPrefs8 (setup dialog).
inPixelFormat The pixel format for this preferred frame size.
inIndex The index of this preferred frame size.
outWidth The dimensions of this preferred frame size.
outHeight

42.33 imQueryContentStateRec

Selector: imQueryContentState

Fill in the outContentStateID, which should be a GUID calculated based on the content state of the clip at inSourcePath.

If the state hasn’t changed since the last call, the GUID returned should be the same.

typedef struct {
const prUTF16Char* inSourcePath;
prPluginID outContentStateID;

} imQueryContentStateRec;

42.34 imQueryDestinationPathRec

Selector: imQueryDestinationPath

Fill in the desired outActualDestinationPath, based on the inSourcePath and
inSuggestedDestinationPath.

typedef struct {
void *inPrivateData;
void *inPrefs;
const prUTF16Char *inSourcePath;
const prUTF16Char *inSuggestedDestinationPath;

(continues on next page)

184 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

prUTF16Char *outActualDestinationPath;
} imQueryDestinationPathRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings data gathered during imGetPrefs8 (setup dialog).
inSourcePath The path of the source file to be trimmed
inSuggestedDestinationPath The path suggested by Premiere where the destination file should be created.
outActualDestinationPath The path where the importer wants the destination file to be created.

42.35 imQueryInputFileListRec

Selector: imQueryInputFileList

Fill in the outContentStateID, which should be a GUID calculated based on the content state of the clip at
inSourcePath.

If the state hasn’t changed since the last call, the GUID returned should be the same.

typedef struct {
void* inPrivateData;
void* inPrefs;
PrSDKString inBasePath;
csSDK_int32 outNumFilePaths;
PrSDKString *outFilePaths;

} imQueryInputFileListRec;

inPrivateDataInstance data gathered from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings data gathered from imGetPrefs8 (setup dialog info).
inBasePath Path of main file that was passed earlier in imOpenFile.
outNumFilePathsThe first time imQueryInputFileList is sent, fill in the number of files that the media uses.
outFilePathsThe second time imQueryInputFileList is sent, this will be preallocated as an array of NULL

strings.
Use the String Suite to fill the array with PrSDKStrings with the actual paths.

42.36 imQueryStreamLabelRec

Selector: imQueryStreamLabel

New in CS6. Based on the stream ID passed in, allocate and pass back a label for the stream.

For stereoscopic importers, use the predefined labels in PrSDKStreamLabel.h.

42.35. imQueryInputFileListRec 185

Premiere Pro C++ SDK Guide, Release 24.0

typedef struct {
void *inPrivateData;
csSDK_int32 *inPrefs;
csSDK_int32 inStreamIdx;
PrSDKString* outStreamLabel;

} imQueryStreamLabelRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered from imGetPrefs8 (setup dialog info).
inStreamIdx The ID of the stream that needs to be labeled.
outStreamLabel The stream label, allocated using the String Suite.

42.37 imSaveFileRec8

Selector: imSaveFile8

Describes the file to be saved.

typedef struct {
void *privatedata;
csSDK_int32 *prefs;
const prUTF16Char* sourcePath;
const prUTF16Char* destPath;
char move;
importProgressFunc progressCallback;
void *progressCallbackID;

} imSaveFileRec8;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered from imGetPrefs8 (setup dialog info).
sourcePath Full path of the file to be saved.
destPath Full path the file should be saved to.
move If non-zero, this is a move operation and the original file (the sourcePath) can be deleted after

copying is complete.
progressCallbackFunction to call repeatedly to provide progress and to check for cancel by user. May be a NULL

pointer, so make sure the function pointer is valid before calling.
progressCallbackIDPass to progressCallback.

186 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

42.38 imSourceVideoRec

Selector: imGetSourceVideo, aiInitiateAsyncRead, aiGetFrame

Describes the requested frame, to be passed back in outFrame.

typedef struct {
void *inPrivateData;
csSDK_int32 currentStreamIdx;
PrTime inFrameTime;
imFrameFormat *inFrameFormats;
csSDK_int32 inNumFrameFormats;
bool removePulldown;
PPixHand *outFrame;
void *prefs;
csSDK_int32 prefsSize;
PrSDKString selectedColorProfileName;
PrRenderQuality inQuality;
imRenderContext inRenderContext;
PrSDKColorSpaceID opaqueColorSpaceIdentifier;

} imSourceVideoRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
currentStreamIdx New in CS6. If the clip has multiple streams (for stereoscopic video or otherwise), this

ID differentiates between them.
inFrameTime Time of frame requested.
inFrameFormats An array of requested frame formats, in order of preference. If NULL, then any format

is acceptable.
inNumFrameFormats The number of frame formats in the inFrameFormats.
removePulldown If true, pulldown should be removed if the pixel format supports it.
outFrame Allocate memory to hold the requested frame, and pass it back here.
prefs New in Premiere Pro 4.1. prefs data from imGetPrefs8
prefsSize New in Premiere Pro 4.1. Size of prefs data.
selectedColorProfileNameNew in Premiere Pro CS5.5. A string that specifies the color profile of the imported

frame.
inQuality New in Premiere Pro CC 2014.
inQuality New in Premiere Pro CC 2014.
inQuality New in Premiere Pro CC 2014.

42.39 imSubTypeDescriptionRec

Selector: imGetSubTypeNames

Added in Premiere Pro CS3. Describes the codec name associated with a given fourcc.

typedef struct {
csSDK_int32 subType;
prUTF16Char subTypeName[256];

} imSubTypeDescriptionRec;

42.38. imSourceVideoRec 187

Premiere Pro C++ SDK Guide, Release 24.0

42.40 imTimeInfoRec8

Selector: imGetTimeInfo8 and imSetTimeInfo8

Describes the timecode and timecode rate associated with a clip.

typedef struct {
void *privatedata;
void *prefs;
char orgtime[18];
csSDK_int32 orgScale;
csSDK_int32 orgSampleSize;
char alttime[18];
csSDK_int32 altScale;
csSDK_int32 altSampleSize;
char orgreel[40];
char altreel[40];
char logcomment[256];
csSDK_int32 dataType;

} imTimeInfoRec;

privatedataInstance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered during imGetPrefs8 (setup dialog).
orgtime[18]The original time in hours;minutes;seconds;frames, as captured from the source reel.

The use of semi-colons indicates (to Premiere) drop-frame timecode, e.g. “00;00;00;00”.
Use colons for non-drop-frame timecode, e.g. “00:00:00:00”.

orgScale Timebase of the timecode in orgtime, represented as scale over sampleSize.
orgSampleSize
alttime[18]An alternative timecode (may differ from the source timecode), formatted as described above.
altScale Timebase of the timecode in alttime.
altSampleSize
orgreel[40]Original reel name.
altreel[40]Alternate reel name.
logcomment[256]Comment string.
dataType Currently always set to 1, denoting SMPTE timecode. More values may be added in the future.

42.41 imTrimFileRec8

Selector: imTrimFile8

Describes how to trim a clip, based on information returned by the importer during imCheckTrim8.

Also provides a callback to update the progress bar and check if the user has cancelled.

typedef struct {
void *privatedata;
void *prefs;
csSDK_int32 trimIn;
csSDK_int32 duration;

(continues on next page)

188 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

csSDK_int32 keepAudio;
csSDK_int32 keepVideo;
const prUTF16Char *destFilePath;
csSDK_int32 scale;
csSDK_int32 sampleSize;
importProgressFunc progressCallback;
void *progressCallbackID;

} imTrimFileRec8;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip settings data gathered during imGetPrefs8 (setup dialog).
trimIn In point of the trimmed clip, in the timebase specified by scale and sampleSize.
duration Duration of the trimmed clip. If 0, then the request is to leave the clip untrimmed, and at the current

duration
keepAudio If non-zero, the request is to keep the audio in the trimmed result.
keepVideo If non-zero, the request is to keep the video in the trimmed result.
destFilePathThe unicode path and name of the file to create.
scale The frame rate of the video, represented as scale over sampleSize.
sampleSize
progressCallbackimportProgressFunc callback to call repeatedly to provide progress and to check for cancel by

user.
May be a NULL pointer, so make sure the function pointer is valid before calling.

progressCallbackIDPass to progressCallback.

42.42 imIndColorSpaceRec

Selector: imGetIndColorSpace

Describes the colorspace of the media.

typedef ColorSpaceRec imIndColorSpaceRec;

typedef struct {
void *privatedata;
PrSDKColorSpaceType outColorSpaceType;
RawColorProfileRec ioProfileRec;
prSEIColorCodesRec outSEICodesRec;

} ColorSpaceRec;

42.42. imIndColorSpaceRec 189

Premiere Pro C++ SDK Guide, Release 24.0

privatedata Private.
outColorSpaceType One of the following:

• kPrSDKColorSpaceType_Undefined
• kPrSDKColorSpaceType_ICC
• kPrSDKColorSpaceType_LUT // DO NOT USE

after 14.x.
• kPrSDKColorSpaceType_SEITags
• kPrSDKColorSpaceType_MXFTags // DO NOT

USE, Not supported.
• kPrSDKColorSpaceType_Predefined

ioProfileRec A structure describing the color profile.

csSDK_int32 ioBufferSize;
void* inDestinationBuffer;
PrSDKString outName;

outSEICodesRec A structure describing the color space using codes; used
with H.265, HEVC, AVC and ProRes media.

csSDK_int32 colorPrimariesCode;
csSDK_int32 transferCharacteristicCode;
csSDK_int32 matrixEquationsCode;
csSDK_int32 bitDepth;
prBool isFullRange;
prBool isRGB;

42.43 RawColorSpaceRec

Selector: imGetIndColorSpace

Describes the colorspace in use with the media.

typedef struct
{

PrSDKColorSpaceType colorSpaceType;
RawColorProfileRec profileRec; // for ICC and Predefined Color␣

→˓Spaces
prSEIColorCodesRec seiCodesRec; // H-265 codes for HEVC, AVC, ProRes

} RawColorSpaceRec;

190 Chapter 42. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

colorSpaceType One of the following:
• kPrSDKColorSpaceType_Undefined
• kPrSDKColorSpaceType_ICC
• kPrSDKColorSpaceType_LUT // DO NOT USE

after 14.x.
• kPrSDKColorSpaceType_SEITags
• kPrSDKColorSpaceType_MXFTags // DO NOT

USE, Not supported.
• kPrSDKColorSpaceType_Predefined

profileRec A structure describing the color space.

csSDK_int32 ioBufferSize;
void* inDestinationBuffer;
PrSDKString outName;

seiCodesRec A structure describing the color space; used with H.265,
HEVC, AVC and ProRes media.

csSDK_int32 colorPrimariesCode;
csSDK_int32 transferCharacteristicCode;
csSDK_int32 matrixEquationsCode;
csSDK_int32 bitDepth;
prBool isFullRange;
prBool isRGB;

Colorspace can be described via multiple way, type depends on colorSpaceType.

If type is kPrSDKColorSpaceType_Predefined - Color space is specified via predefined strings from
PrSDKColorSpaces.h.

If type is kPrSDKColorSpaceType_ICC - Color space is specified via ICC profile in profileRec.

If type is kPrSDKColorSpaceType_SEITags - Color space is specified via enums codes for color primaries (C),
transfer characteristic (T), matrix equation (M). Supported C-T-M enums are defined in PrSDKColorSEICodes.h.

42.44 EmbeddedLUTRec

Selector: imGetIndColorSpace

Describes the LUT embedded with in the media.

typedef struct
{
void* privateData;
RawColorProfileRec lutBlobRec;
RawColorSpaceRec lutInColorSpaceRec;
RawColorSpaceRec lutOutColorSpaceRec;

} EmbeddedLUTRec;

42.44. EmbeddedLUTRec 191

Premiere Pro C++ SDK Guide, Release 24.0

privatedata Private.
lutBlobRec Describes the embedded LUT.
lutInColorSpaceRec Describes the LUT input colorspace rec.
lutOutColorSpaceRec Describes the LUT output colorspace rec.

42.45 imRenderContext

Selector: imGetSourceVideo (member of imSourceVideoRec)

Describes the context of the render; why it’s occurring, and what rate and ratio is in use.

typedef struct
{
imRenderIntent inIntent;
double inPlaybackRatio;
double inPlaybackRate;

} imRenderContext;

inIntentThe intent of the render being requested. - imRenderIntent_Unknown (-1) - imRenderIntent_Export
0 - imRenderIntent_Stopped // DO NOT USE after 14.x. - imRenderIntent_Scrubbing -
imRenderIntent_Preroll - imRenderIntent_Playing - imRenderIntent_SpeculativePrefetch
- imRenderIntent_Thumbnail // DO NOT USE after 14.x. - imRenderIntent_Analysis -
imRenderIntent_ExportPreview - imRenderIntent_ExportProxies

inPlaybackRatio1.0 means full framerate, lower values indicate deteriorating playback.
inPlaybackRate1.0 means 1x forward, -1.0 means 1x backward.

192 Chapter 42. Structure Descriptions

CHAPTER

FORTYTHREE

SUITES

43.1 Suites

For information on how to acquire and manage suites, see SweetPea Suites.

43.1.1 Async File Reader Suite

New in Premiere Pro CS5. A cross-platform file handling suite.

43.1.2 Deferred Processing Suite

Allows an importer to schedule processing time when importing asynchronously, and to notify the user that the media
item is pending additional processing.

In the Project panel, the name of the item will be italicized, and its thumbnail will show as Pending.

193

Premiere Pro C++ SDK Guide, Release 24.0

194 Chapter 43. Suites

CHAPTER

FORTYFOUR

EXPORT CONTROLLERS

Starting in Premiere Pro 5.0.2, an export controller can drive any exporter to generate a file in any format and perform
custom post-processing operations. Developers wanting to integrate Premiere Pro with an asset management system
will want to use this API instead.

An export controller adds its own custom menu item to the File > Export submenu. When the user chooses the menu
item, the plugin is called with a TimelineID, which represents the current sequence. Although details on the current
sequence are not passed in, the export controller can use the Sequence Info Suite to query for various properties. The
export controller can then optionally display any custom modal UI to allow the user to set any parameters for the export.

This UI will need to be provided by the export controller.

The export controller should then call ExportFile in the Export Controller Suite, which takes the TimelineID, a path to
an exporter preset, and a path for the output. This will tell Premiere Pro to handle the export, displaying progress. The
call will return either a success value, an error, or that the user canceled. During the export, the UI will be blocked,
just as when doing a standard export that doesn’t use the Adobe Media Encoder Render Queue.

Once Premiere Pro completes the export, the call will return to the export controller. The plugin can then perform any
post-processing operations, such as transferring the newly exported file over the network, or registering the file in an
asset management system.

195

Premiere Pro C++ SDK Guide, Release 24.0

196 Chapter 44. Export Controllers

CHAPTER

FORTYFIVE

EXPORTERS

Exporters are used to export video, audio, and markers in any format. Exporters get individual video frames in a
requested pixel format (generally, uncompressed video) and uncompressed audio. The exporter is responsible for any
compression of the video and audio data, and wrapping the output in a file format. To reuse an existing exporter, you
may provide an export controller.

Exporters can be used from within Premiere Pro, or from Adobe Media Encoder. From within Premiere Pro, go to
the File > Export > Media dialog. From there, the Export Settings dialog appears. The format chosen in the Format
drop-down determines the exporter used, and the exporter provides the parameter settings and summary displayed in
the Export Settings dialog.

Exporters can optionally provide hardware acceleration by coordinating with a renderer plugin to render timeline seg-
ments. Legacy editing modes are formed by the combination of an exporter and a player; the exporter generates preview
files and the player manages the cutlist.

If you’ve never developed an exporter before, you can skip Whats New, and go directly to Getting Started.

197

Premiere Pro C++ SDK Guide, Release 24.0

198 Chapter 45. Exporters

CHAPTER

FORTYSIX

WHATS NEW

46.1 What’s New in CC

A new Captions tab has been added to the Export Settings, for Closed Captioning export. For all formats, a sidecar file
containing the captions can be exported.

To learn how exporters can optionally embed Closed Captioning directly in the output file, see Closed Captioning.

Two new selectors have been added to GetExportSourceInfo in the Export Info Suite. You can use kExport-
Info_UsePreviewFiles to check if the user has checked “Use Previews” in the Export Settings dialog. If so, if possible,
reuse any preview files already rendered. You can use kExportInfo_NumAudioChannels to get the number of audio
channels in a given source.

This can be used to automatically initialize the audio channel parameter in the Audio tab of the Export Settings to
match the source.

In the Export Param Suite, a new function, MoveParam(), can be used to move an existing parameter to a new location.

46.2 What’s New in CS6

Exporters can now use the Exporter Utility Suite for “push” model compression. The exporter host can simply push
frames to a thread-safe exporter-specified callback. This will cut down on the code previously required for render
loop management. It should also yield substantial performance increases for exporters that haven’t finely tuned their
multithreaded rendering. The “pull” model is still supported, and required for Encore and legacy versions of Premiere
Pro and Media Encoder.

The new Export Standard Param Suite provides the standard parameters used in many built-in exporters. This can
greatly reduce the amount of code needed to manage standard parameters for a typical exporter, and guarantee consis-
tency with built-in exporters.

Stereoscopic video is now supported when exporting directly from Premiere Pro. In other words, when exports are
queued to run in Adobe Media Encoder, they can not get stereoscopic video. Note that currently stereoscopic exporters
must use the “pull” model and the new

MakeVideoRendererForTimelineWithStreamLabel() to get rendered frames from multiple video streams.

Export Param Suite now adds SetParamDescription(), to set tooltip strings for parameters. For the three line Export
Summary description in the Export Settings dialog, we’ve swapped the 2nd and 3rd lines so that the bitrate summary
comes after the audio summary. We’ve renamed the structure to make developers aware of this during a recompile.

Adobe Media Encoder now includes a Preset Browser that provides more organization for presets. Make sure your
presets take advantage of this organization, and are shown in your desired proper location in the Preset Browser.

199

Premiere Pro C++ SDK Guide, Release 24.0

Exporters can now set events (error, warning, or info) for a specific encode in progress in the Adobe Media Encoder
render queue. The existing call in the Error Suite is not sufficient for AME to relate the event to a specific encode. So
the new Exporter Utility Suite provides a way for exporters running either in Premiere Pro or Adobe Media Encoder to
log events. These events are displayed in the application UI, and are also added to the AME encoding log.

Multiple exporters are now supported in a single plugin. To support this, exExporterIn foRec is now set to exporters
on exShutdown.

exQueryOutputSettingsRec has a new member, outUseMaximumRenderPrecision, moving knowledge of this render
parameter to the exporter.

46.3 What’s New in CS5.5

A new call, RenderVideoFrameAndConformToPixelFormat, has been added to the Sequence Render Suite. This
allows an exporter to request a rendered frame and then conform it to a specific pixel format.

A new return value, exportReturn_ParamButtonCancel, has been added to signify that an exporter is returning
from exSelParamButton without modifying anything.

46.3.1 Export Controller API

We have opened up a new export controller API that can drive any exporter to generate a file in any format and perform
custom post-processing operations. Developers wanting to integrate Premiere Pro with an asset management system
will want to use this API instead.

46.4 What’s New in CS5

exQueryOutputFileListAfterExportRec is now exQueryOutputFileListRec, with a slight change to the struc-
ture order.

We’ve also fixed a few bugs, such as bug 1925419, where all sliders would be given a checkbox to disable the control,
as if exParamFlag_optional had been set.

We’ve made a couple new attributes available to exporters via the GetExportSourceInfo() call - the video poster
frame time, and the source timecode.

3rd-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray compliant files.

46.5 Porting From the Compiler API

The export API replaces the old compiler API from CS3 and earlier versions. The export API combines the processing
speed and quality of the old compiler API, with the UI flexibility of Media Encoder. Although the selectors and
structures have been renamed and reorganized, much of the code that deals with rendering and writing frames is mostly
the same.

The parameter UI is what has changed the most. Rather than having a standard set of parameters as standard compilers
had, or having a completely custom UI as custom compilers had, in

200 Chapter 46. Whats New

Premiere Pro C++ SDK Guide, Release 24.0

the new exporter API, all parameters must be explicitly added using the Export Param Suite. First register the parame-
ters during exSelGenerateDefaultParams, and then provide the localized strings and constrained parameter values
during exSelPostProcessParams. When the exporter is sent exSelExport to export, get the parameter values,
again using the Export Param Suite.

46.5. Porting From the Compiler API 201

Premiere Pro C++ SDK Guide, Release 24.0

202 Chapter 46. Whats New

CHAPTER

FORTYSEVEN

GETTING STARTED

Start your plugin by modifying the SDK sample. Step through the code in your debugger to learn the order of events.

47.1 Media Encoder as a Test Harness

It may be faster to developing exporters using Media Encoder, since it is a lighter-weight application. However, you will
want to test your exporter in Premiere Pro, to make sure the behavior is the same as when running in Media Encoder.

47.2 Adding Parameters

Starting in CS6, the Export Standard Param Suite provides a way to add several basic sets of parameters, whether for
video, audio, still sequences, etc. Beyond the standard parameters, custom defined parameters can be added using the
Export Param Suite.

First register the parameters during exSelGenerateDefaultParams. Then provide the localized strings and min/max
parameter values during exSelPostProcessParams. When the exporter is sent exSelExport to export, get the user-
specified parameter values using the Export Param Suite.

47.3 Updating Parameters Dynamically

Parameters can be updated dynamically based on user interaction with any related parameter. The time to update is
during the exSelValidateParamChanged selector. Use ChangeParam in the Export Param Suite to make the change.
Then, set exParamChangedRec.rebuildAllParams to true before returning. If you don’t set that flag, parameters
may appear out of order after a change.

203

Premiere Pro C++ SDK Guide, Release 24.0

47.4 Supporting “Match Source”

The exporter must set exExporterInfoRec.canMatchSource to true. This will add the Match Source button to the
Video tab in the Export Settings.

Next, if the Match Source button is pressed in the Export Settings, exPostProcessParamsRec.
doConformToMatchParams will be true. The exporter should respond by updating any parameter values it
can to match the source settings.

47.5 Get Video Frames and Audio Samples

Starting in CS6, exporters can use the new push model, or the legacy pull model for obtaining frames. The new push
model is supported starting in CS6, and the pull model is still supported.

Push Model

Using the push model, the exporter host can simply push frames to a thread-safe exporter-specified callback. Use
DoMultiPassExportLoop in the Exporter Utility Suite to register the callback.

Compared with the pull model, this will cut down on the code previously required for render loop management. It should
also yield substantial performance increases for exporters that haven’t finely tuned their multithreaded rendering.

47.5.1 Pull Model

Using the pull model to get video and audio data involves making calls to the host to ask for this data. Use the Sequence
Render Suite to get individual video frames, and the Sequence Audio Suite to get buffers of audio samples.

Video frames can be requested synchronously or asynchronously. The asynchronous method can yield better perfor-
mance, but it is up to the exporter to provide its asynchronous render loop.

47.6 Handling a Pause or Cancel by the User (Pull Model only)

Push model export does not require any special code to handle pause or cancel by the user. For pull model export, the
way to check if the user has paused or cancelled the export is to call UpdateProgressPercent in the Export Progress
Suite, and check the return value. If the return value is suiteError_ExporterSuspended, the user has hit the pause but-

ton, which is only available in the Media Encoder UI. If the return value is exportReturn_Abort, then the export has
been cancelled by the user.

If UpdateProgressPercent returns suiteError_ExporterSuspended, then the exporter should next call
WaitForResume, which will block until the user has unpaused the export.

If UpdateProgressPercent returns exportReturn_Abort, the exporter should take steps to abort the export and clean
up. Note that the exporter can still continue to ask for video frames and audio samples after a cancel has been received,
which is useful in certain circumstances, such as if an exporter needs a few more frames to complete an MPEG GOP,
or if it wants to include the audio for the video exported up to the point of cancel. This allows the exporter to generate
well-formed output files, even in the case of a cancel.

204 Chapter 47. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

47.7 Creating Presets

Create your own presets using the Export Settings UI, either from within Premiere Pro, or Media Encoder. Just modify
the parameters the way you want, and hit the Save icon to save the preset to disk. The presets are saved with the
extension ‘.epr’.

Starting in CS5, all the presets are saved to the same location, regardless of whether saved from Premiere Pro or Media
Encoder:

On Windows 7, presets are saved here: [User folder]\AppData\Roaming\Adobe\Common\AME\[version]\
Presets\\

On Mac OS: ~/Library/Preferences/Adobe/Common/AME/[version]/Presets/

In CS4, where the files are saved depends on whether you’ve opened the Export Settings UI in Premiere Pro or Media
Encoder:

47.7.1 Media Encoder presets

On Windows Vista, presets are saved here: [User folder]\AppData\Roaming\Adobe\Adobe Media Encoder\
[version]\Presets\\

On Windows XP: [Documents and Settings folder]\[user name]\Application Data\\ Adobe\Adobe
Media Encoder\[version]\Presets\\

On Mac OS: ~/Library/Preferences/Adobe/Adobe Media Encoder/[version]/ Presets/

47.7.2 Premiere Pro presets

On Windows Vista, presets are saved here: [User folder]\AppData\Roaming\Adobe\Premiere Pro\
[version]\\ Presets\\

On Windows XP: [Documents and Settings folder]\[user name]\Application Data\\ Adobe\
Premiere Pro\[version]\Presets\\

On Mac OS: ~/Library/Preferences/Adobe/Adobe Premiere Pro/[version]/Presets/

AME Preset Browser

Starting in CS6, Adobe Media Encoder has a Preset Browser with provides a structured organization of presets. Third-
party presets can be added to any folder or subfolder within the main categories. Once you have created a preset, it will
default to the Other folder. You can set the desired folder location in the <FolderDisplayPath> tag in the preset XML.

For example, if you set it to: <FolderDisplayPath>System Presets/Image Sequence/PNG</
FolderDisplayPath> then AME will display the preset in the System Presets > Image Sequence >
PNG folder.

It is essential to use: “System Presets/xxx/” where the xxx must be any of the existing main categories (use the English
name for this). Only one level below can you can create a custom-named folder. If the folder doesn’t already exist, it
will be created.

The Preset Browser data is cached in a file at: [User Folder]\AppData\Roaming\Adobe\Common\AME\
[version]\Presets\\ PresetTree.xml

If you want to force a refresh of the Preset Browser data, just quit AME, delete this file, and re-launch AME.

47.7. Creating Presets 205

Premiere Pro C++ SDK Guide, Release 24.0

47.7.3 Installation in CS4

For better performance, in CS4, we recommend you install any presets for your exporter in the application folder for
Premiere Pro and Media Encoder.

For both Windows and Mac OS: [App installation path]\MediaIO\systempresets\[exporter
subfolder]

The subfolder must be named based on the hexadecimal fourCCs of the ClassID and filetype of the exporter. For
example, the SDK exporter has a ClassID of ‘DTEK’ or 0x4454454B, and a filetype of SDK or 0x53444B5F. So the
subfolder must be named ‘4454454B_53444B5F’. For convenience, you can find the ClassID and filetype fourCCs in
the preset file itself, in a decimal representation.

47.8 Parameter Caching

During development, when you modify parameters in your exporter and reload the plugin into the host, the Settings
UI may continue to show stale parameter data. New parameters that you have added may not appear, or old ones may
continue to appear. Or if you have changed the UI for an existing parameter, it may not take effect.

At a minimum, any old presets must be deleted. This includes Media Encoder presets and Premiere Pro presets. After
deleting the old presets, there are two options, depending on whether the an older version of the exporter has already
been distributed and is in use.

47.8.1 Increment the Parameter Version

If an older version of the exporter is already being used by customers, you’ll need to use parameter versioning. During
exSelGenerateDefaultParams, you should call SetParamsVersion() in the Export Param Suite and increment the
version number.

After that, create new presets and sequence encoder presets (if needed) using the new set of parameters. Make sure
your installer removes the old presets, and installs the new ones.

47.8.2 Flush the Parameter Cache

If you don’t increment the parameter version, you can manually flush the parameter cache in a few steps. After you’ve
deleted the old presets, do the following:

1) Delete hidden presets that were created by the hosts for the most recently used parameter settings. Look for a file
called Placeholder Preset.epr in both the folders above the Media Encoder presets and the Premiere Pro presets.

2) Delete batch.xml, used by Media Encoder. This is also in the folder above the Media Encoder presets. Deleting
this is equivalent to deleting the items out of the Media Encoder render queue.

3) Delete Premiere Pro sequence encoder presets that use the exporter, if any

4) Even after deleting all the old presets, Media Encoder may initially show old cached parameter UI. In the Settings
UI, just switch to a different format and then back to yours.

206 Chapter 47. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

47.9 Multichannel Audio Layouts

To support multichannel audio layouts, kPrAudioChannelType_MaxChannel should be the type requested in MakeAu-
dioRenderer().

The audio buffers you use for GetAudio() should likewise be an array of kPrAudioChannelType_MaxChannel channels,
and yes, this means you may be allocating more space than actually used.

In the exporter’s Audio tab UI, you can provide a parameter to choose between various multi-channel audio layouts.
You can compare your settings to what we have with the built-in formats, QuickTime and MXF (such as MXF OP1a
and DNxHD). From the user selection in your audio export settings (e.g., 2x stereo, etc), you will know how many of
those channels passed back in GetAudio() should actually be written to the file.

Here’s a helpful video on audio track mapping: http://www.video2brain.com/en/lessons/
changes-in-audio-tracks-and-merged-clip-audio

47.10 Closed Captioning

Starting in CC, the Export Settings includes a new Captions tab, for Closed Captioning export. For all formats, a
sidecar file containing the captions can be exported. Additionally, exporters can optionally embed Closed Captioning
directly in the output file. First, the exporter must set exExporterInfoRec.canEmbedCaptions to true. This will add the
option to embed the captions in the output file, from the Export Options drop-down in the Captions tab. If this option
is selected during export, exDoExportRec.embedCaptions will be true. The exporter should retrieve the captions using
the Captioning Suite.

47.11 Multiple File Formats

To support more than one file format in a single exporter, describe one format at a time during exSelStartup. After
describing the first one, return exportReturn_IterateExporter from exSelStartup, and the exporter will be called again
to describe the second format, and so on. After describing the last format, return exportReturn_IterateExporter, and
the exporter will be called yet again. This time, return exportReturn_IterateExporterDone.

Use a unique fileType for each format. When you are later sent exSelGenerateDefaultParams,
exSelPostProcessParams, etc, you’ll want to pay attention to the fileType, and respond according to the
format.

47.12 Exporters Used for Editing Modes

An exporter that is used in an editing mode must have a codec parameter, and that parameter ID must be ADBEV-
ideoCodec. If Premiere Pro cannot find this parameter, it will not be able to reopen projects in the custom editing
mode, and will revert the project to Desktop mode.

47.9. Multichannel Audio Layouts 207

http://www.video2brain.com/en/lessons/changes-in-audio-tracks-and-merged-clip-audio
http://www.video2brain.com/en/lessons/changes-in-audio-tracks-and-merged-clip-audio

Premiere Pro C++ SDK Guide, Release 24.0

47.12.1 Sequence Encoder Presets

Sequence preview presets are now required for editing modes. These contain the exporter parameters to generate
preview files. This makes preview file formats much easier to define, by using the Media Encoder or Premiere Pro UI
to create presets, rather than directly editing XML.

To create a sequence encoder preset:

1) Create a preset. The name that you give it will be the name that will be used in the Sequence Settings > General
> Preview File Format drop-down.

2) Make sure this preset is installed in the application folder for Premiere Pro, along with the other sequence presets:

On Windows, they should be installed here: [App installation path]\Settings\EncoderPresets\
SequencePreview\[editing mode GUID]*.epr

On MacOS, it is basically the same (inside the application package): [App installation path]/[Premiere Pro
package]/Contents/Settings/EncoderPresets/ SequencePreview/[editing mode GUID]/*.epr

As you can see by the installation paths above, Premiere Pro associates the sequence preview presets with the editing
mode they go with, by using the presets in the folder that matches the GUID of the editing mode. The editing mode
GUID is defined in the editing mode XML file, using the <EditingMode.ID> tag.

47.12.2 Adding new Preview File Formats to Existing Editing Modes

You can not only provide sequence preview presets for your own editing mode, but you could even add additional
sequence preview presets for one of the built-in editing modes. Editing mode GUIDs for built-in editing modes can
be found in the Adobe Editing Modes. xml file. For example, the Desktop editing mode on Windows has the GUID
9678AF98A7B7-4bdb-B477-7AC9C8DF4A4E. On Mac OS it is 795454D9-D3C2-429d-9474- 923AB13B7018.

You can additionally restrict the list and specify which one is chosen by default, by editing the <PresetComments>
tag in the preset file.

If the value of the tag starts with “IsConstrained,”, then a comma delimited list of 4ccs follows that dictates which
codecs are available, and the first one is chosen by default.

For example, QuickTime DV NTSC.epr for the Mac DV NTSC editing mode has this:
<PresetComments>IsConstrained,dvc </PresetComments>

Which restricts the codec selection of the exporter to be only the single codec choice.

47.13 Stereoscopic Video

Note that currently stereoscopic exporters must use the old “pull” model, and only receive stereoscopic video when
exporting directly from Premiere Pro. In other words, when exports are queued to run in Adobe Media Encoder, they
will not get stereoscopic video.

To get rendered frames for both left and right eye, use the Video Segment Suite to request the left and right cutlists,
and render frames from both. An exporter can tell if segments in both of them are identical (implying that they have
nothing stereoscopic about them) by looking at the segment hashes, and you can tell if two frames are identical (by
looking at the request identifiers).

208 Chapter 47. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

47.14 Timeline Segments in Exporters

The timeline segments available to exporters do not always fully describe the sequence being exported. To consistently
get timeline segments that fully describe the sequence, an exporter needs to work along with a renderer plugin.

During a sequence export, Premiere Pro makes a copy of the project file and passes it to Media Encoder. Media Encoder
takes that project and uses the PProHeadless process to generate rendered frames. So when an exporter, which is running
in Media Encoder, parses the sequence, it only has a very high-level view. It sees the entire sequence as a single clip,
and sees any optional cropping or filters as applied effects. So when parsing that simple, high-level sequence, if there
are no effects, an exporter can just use the MediaNode’s ClipID with the Clip Render Suite to get frames directly from
the PProHeadless process. In the PProHeadless process, a renderer plugin can step in, parse the real sequence in all its
glory, and optionally provide frames in a custom pixel format.

When rendering preview files, Premiere Pro does the rendering without Media Encoder, so an exporter can get the
individual segments for each clip, similar to before.

47.15 Smart Rendering

Under very specific circumstances, an exporter can request compressed frames, avoiding unnecessary
de/recompression.

This would be done by providing both exporter and renderer plugins that parse timeline segments.

If the source can be copied over to the destination, the compressed frames can be passed in a custom pixel format.

These compressed frames are not guaranteed, however, so the exporter should be prepared to handle uncompressed
frames.

47.16 Entry Point

DllExport PREMPLUGENTRY xSDKExport (
csSDK_int32 selector,
exportStdParms* stdParmsP,
void* param1,
void* param2)

selector is the action the host wants the exporter to perform.

stdParms provides callbacks to obtain additional information from the host or to have the host perform tasks.

Parameters 1 and 2 vary with the selector; they may contain a specific value or a pointer to a structure.

Return exportReturn_ErrNone if successful, or an appropriate return code.

47.14. Timeline Segments in Exporters 209

Premiere Pro C++ SDK Guide, Release 24.0

47.17 Standard Parameters

A pointer to this structure is sent from the host to the plugin with every selector.

typedef struct {
csSDK_int32 interfaceVer;
plugGetSPBasicSuiteFunc* getSPBasicSuite;

} exportStdParms;

Member Description
interfaceVer Exporter API version

• Premiere Pro CC - prExportVersion400
• Premiere Pro CS6 - prExportVersion300
• Premiere Pro CS5.5 - prExportVersion250
• Premiere Pro CS5 - prExportVersion200
• Premiere Pro 4.0.1 through 4.2.1 - prExportVer-

sion101
• Premiere Pro CS4 - prExportVersion100

getSPBasicSuite This very important call returns the SweetPea suite that
allows plugins to acquire and release all other SweetPea
Suites.
SPBasicSuite* getSPBasicSuite();

210 Chapter 47. Getting Started

CHAPTER

FORTYEIGHT

SELECTOR TABLE

This table summarizes the various selector commands an exporter can receive.

Selector param1 param2
exSelStartup exExporterInfoRec* unused
exSelBeginInstance exExporterInstanceRec* unused
exSelGenerateDefaultParams exGenerateDefaultParamRec* unused
exSelPostProcessParams exPostProcessParamsRec* unused
exSelValidateParamChanged exParamChangedRec* unused
exSelGetParamSummary exParamSummaryRec* unused
exSelParamButton exParamButtonRec* unused
exSelExport exDoExportRec* unused
exSelQueryExportFileExtension exQueryExportFileExtensionRec* unused
exSelQueryOutputFileList exQueryOutputFileListRec* unused
exSelQueryStillSequence exQueryStillSequenceRec* unused
exSelQueryOutputSettings exQueryOutputSettingsRec* unused
exSelValidateOutputSettings exValidateOutputSettingsRec* unused
exSelExport2 exDoExportRec2* unused
exSelQueryExportColorSpace exQueryExportColorSpaceRec* unused
exSelShutdown exExporterInfoRec* unused

211

Premiere Pro C++ SDK Guide, Release 24.0

212 Chapter 48. Selector Table

CHAPTER

FORTYNINE

SELECTOR DESCRIPTIONS

This section provides a brief overview of each selector and highlights implementation issues.

Additional implementation details are at the end of the chapter.

49.1 exSelStartup

• param1 - exExporterInfoRec*

• param2 - unused

Sent during application launch, unless the exporter has been cached.

A single exporter can support multiple codecs and file extensions.

exExporterInfoRec describes the exporter’s attributes, such as the format display name.

49.2 exSelBeginInstance

• param1 - exExporterInstanceRec*

• param2 - unused

Allocate any private data.

49.3 exSelGenerateDefaultParams

• param1 - exGenerateDefaultParamRec*

• param2 - unused

Set the exporter’s default parameters using the Export Param Suite.

213

Premiere Pro C++ SDK Guide, Release 24.0

49.4 exSelPostProcessParams

• param1 - exPostProcessParamsRec*

• param2 - unused

Post process parameters. This is where the localized strings for the parameter UI must be provided.

49.5 exSelValidateParamChanged

• param1 - exParamChangedRec*

• param2 - unused

Validate any parameters that have changed. Based on a change to a parameter value, the exporter may update other
parameter values, or show/hide certain parameter controls, using the Export Param Suite.

To notify the host that the plugin is changing other parameters, set exParamChangedRec.rebuildAllParams to a
non-zero value.

49.6 exSelGetParamSummary

• param1 - exParamSummaryRec*

• param2 - unused

Provide a text summary of the current parameter settings, which will be displayed in the summary area of the Export
Settings dialog.

49.7 exSelParamButton

• param1 - exParamButtonRec*

• param2 - unused

Sent if exporter has one or more buttons in its parameter UI, and the user clicks one of the buttons in the Export Settings.

The ID of the button pressed is passed in exParamButtonRec.buttonParamIdentifier.

Display any dialog using platform-specific UI, collect any user input, and save any changes back to privateData.

If the user cancels the dialog, return exportReturn_ParamButtonCancel to signify that nothing in the privateData
has changed.

214 Chapter 49. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

49.8 exSelExport

• param1 - exDoExportRec*

• param2 - unused

Do the export! Sent when the user starts an export to the format supported by the exporter, or if the exporter is used in
an Editing Mode and the user renders the work area.

Single file exporters are sent this selector only once per export (e.g. AVI, QuickTime). To create a single file, setup
a loop where you request each frame in the startTime to endTime range using one of the render calls in the Sequence
Render Suite and GetAudio in the Sequence Audio Suite. For better performance, you can use the asynchronous calls
in the Sequence Render Suite to have the host render multiple frames on multiple threads.

Still frame exporters are sent exSelExport for each frame in the sequence (e.g. numbered TIFFs). The host will name
the files appropriately.

Save render time by checking to see if frames are repeated. Inspect the SequenceRen-
der_GetFrameReturnRec.repeatCount returned from a render call, which holds a frame repeat count.

49.9 exSelExport2

• param1 - exDoExportRec2*

• param2 - unused

Do the export! Identical to exSelExport, except that exDoExportRec2 (which contains a LUT description) is passed.

Exporter can specify the ID of the LUT that needs to be applied as last step in export processing. This is for including
LUT for doing color space conversion in export path.

In case LUT is specified, ExportColorSpace signifies the output color space of LUT.

49.10 exSelQueryExportFileExtension

• param1 - exQueryExportFileExtensionRec*

• param2 - unused

For exporters that support more than one file extension, specify an extension given the file type.

If this selector is not supported by the exporter, the extension is specified by the exporter in exExporterInfoRec.
fileTypeDefaultExtension.

49.8. exSelExport 215

Premiere Pro C++ SDK Guide, Release 24.0

49.11 exSelQueryOutputFileList

• param1 - exQueryOutputFileListRec*

• param2 - unused

For exporters that export to more than one file. This is called before an export for the host to find out which files would
need to be overwritten.

It is called after an export so the host will know about all the files created, for any post encoding tasks, such as FTP. If
this selector is not supported by the exporter, the host application will only know about the original path.

This selector will be called three times. On the first call, the plugin fills out numOutputFiles. The host will then make
numOutputFiles count of outputFileRecs, but empty.

On the second call, the plugin fills out the path length (incl trailing null) for each exOutputFileRec element in output-
FileRecs. The host will then allocate all paths in each outputFileRec.

On the third call, the plugin fills in the path members of the outputFileRecs.

49.12 exSelQueryStillSequence

• param1 - exQueryStillSequenceRec*

• param2 - unused

The host application asks a still-only exporter if it wants to export as a sequence, and at what frame rate.

49.13 exSelQueryOutputSettings

• param1 - exQueryOutputSettingsRec*

• param2 - unused

The host application asks the exporter for general details about the current settings. This is a required selector.

49.14 exSelValidateOutputSettings

• param1 - exValidateOutputSettingsRec*

• param2 - unused

The host application asks the exporter if it can export with the current settings.

The exporter should return exportReturn_ErrLastErrorSet if not, and the error string should be set to a description
of the failure.

216 Chapter 49. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

49.15 exSelEndInstance

• param1 - exExporterInstanceRec*

• param2 - unused

Deallocate any private data.

49.16 exSelShutdown

• param1 - unused

• param2 - unused

Sent immediately before shutdown. Free all remaining memory and close any open file handles.

49.17 exSelQueryExportColorSpace

• param1 - exExporterInstanceRec*

• param2 - unused

Describe the color space to be used during export.

49.15. exSelEndInstance 217

Premiere Pro C++ SDK Guide, Release 24.0

218 Chapter 49. Selector Descriptions

CHAPTER

FIFTY

RETURN CODES

Return Code Reason
exportReturn_ErrNone Operation has completed without error.
exportReturn_Abort User aborted the export.
exportReturn_Done Export finished normally.
exportReturn_InternalError Return this if none of the other errors apply.
exportReturn_OutOfDiskSpace Out of disk space error.
exportReturn_BufferFull The offset into the buffer would overflow it.
exportReturn_ErrOther The vaguer the better, right?
exportReturn_ErrMemory Out of memory.
exportReturn_ErrFileNotFound File not found.
exportReturn_ErrTooManyOpenFiles Too many open files.
exportReturn_ErrPermErr Permission violation.
exportReturn_ErrOpenErr Unable to open the file.
exportReturn_ErrInvalidDrive Invalid drive.
exportReturn_ErrDupFile Duplicate filename.
exportReturn_ErrIo File I/O error.
exportReturn_ErrInUse File is in use.
exportReturn_IterateExporter Return value from exSelStartup to request exporter iteration.
exportReturn_IterateExporterDone Return value from exSelStartup to indicate there are no more exporters.
exportReturn_InternalErrorSilent Return error code from exSelExport to put a custom error message on screen just before returning control to the host.
exportReturn_ErrCodecBadInput A video codec refused the input format.
exportReturn_ErrLastErrorSet The exporter is returning an error using the Error Suite.
exportReturn_ErrLastWarningSet The exporter is returning a warning using the Error Suite.
exportReturn_ErrLastInfoSet The exporter is returning information using the Error Suite.
exportReturn_ErrExceedsMaxFormatDuration The exporter (or the host) has deemed the duration of the export to be too large.
exportReturn_VideoCodecNeedsActivation The current video codec is not activated and cannot be used.
exportReturn_AudioCodecNeedsActivation The current audio codec is not activated and cannot be used.
exportReturn_IncompatibleAudioChannelType The requested audio channels are not compatible with the source audio.
exportReturn_IncompatibleVideoCodec New in CS5. User tried to load a preset with an invalid video codec
exportReturn_IncompatibleAudioCodec New in CS5. User tried to load a preset with an invalid audio codec
exportReturn_ParamButtonCancel New in CS5.5. Return this from exSelParamButton if the user cancelled settings dialog by pressing cancel button.
exportReturn_ErrMediaFormat Error encountered writing to media format.
exportReturn_ErrVideoEncoderCreation Error encountered while creating video encoder.
exportReturn_ErrAudioEncoderConfiguration Error encountered configuring audio encoder.
exportReturn_ErrVideoEncoderConfiguration Error encountered configuring video encoder.
exportReturn_ErrInvalidPixelFormat Pixel format not compatible with output format.
exportReturn_ErrOutputBuffer Error creating output buffer.
exportReturn_ErrInputBuffer Error accessing input buffer.

continues on next page

219

Premiere Pro C++ SDK Guide, Release 24.0

Table 1 – continued from previous page
Return Code Reason
exportReturn_ErrAudioEncoder Error encountered during audio encoding.
exportReturn_ErrVideoEncoder Error encountered during video encoding.
exportReturn_ErrMuxer Error encountered during muxing.
exportReturn_ErrVersion Error encountered because of versions.
exportReturn_ErrColorSpace Specified color space is not compatible with output format.
exportReturn_ErrVideoEncoderAdaptor Error encountered using video encoding adaptor.
exportReturn_ErrPixelBufferCreation Error creating pixel buffer.
exportReturn_ErrPixelBufferLock Error encountered locking buffer.
exportReturn_ErrPixelBufferPlanarFormat Error encountered with pixel buffer planar format.
exportReturn_ErrPixelBufferBytesMatch Error encountered with byte matching, within pixel buffer.
exportReturn_ErrPixelBufferUnlock Error encountered unlocking buffer.
exportReturn_ErrPixelBufferException Error encountered; exception accessing buffer.
exportReturn_ErrPixelBufferAppend Error appending to pixel buffer.
exportReturn_Unsupported Unsupported selector.

220 Chapter 50. Return Codes

CHAPTER

FIFTYONE

STRUCTURES

Structure Sent with selector
exDoExportRec exSelExport
exExporterInfoRec exSelStartup
exExporterInstanceRec exSelBeginInstance and exSelEndInstance
exGenerateDefaultParamRec exSelGenerateDefaultParams
exParamButtonRec exSelParamButton
exParamChangedRec exSelValidateParamChanged
exParamSummaryRec exSelGetParamSummary
exPostProcessParamsRec exSelPostProcessParams
exQueryExportFileExtensionRec exSelQueryExportFileExtension
exQueryOutputFileListRec exSelQueryOutputFileList
exQueryOutputSettingsRec exSelQueryOutputSettings
exQueryStillSequenceRec exSelQueryStillSequence
exValidateOutputSettingsRec exSelValidateOutputSettings

221

Premiere Pro C++ SDK Guide, Release 24.0

222 Chapter 51. Structures

CHAPTER

FIFTYTWO

STRUCTURE DESCRIPTIONS

52.1 exDoExportRec

Selector: exSelExport

Provides general export settings. The exporter should retrieve the parameter settings from the Export Param Suite.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 exportAudio;
csSDK_int32 exportVideo;
PrTime startTime;
PrTime endTime;
csSDK_uint32 fileObject;
PrTimelineID timelineData;
csSDK_int32 reserveMetaDataSpace;
csSDK_int32 maximumRenderQuality;
csSDK_int32 embedCaptions

} exDoExportRec;

223

Premiere Pro C++ SDK Guide, Release 24.0

exporterPluginIDThe host’s internal identifier for this exporter, used for various suite calls, such as in the Sequence
Render Suite and Sequence Audio Suite.

privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.

Indicates which format the exporter should write, since exporters can support multiple formats.
exportAudio If non-zero, export audio.
exportVideo If non-zero, export video.
startTime The start time of the sequence to export.
endTime The end time of the sequence to export. If startTime is 0, also the total durection to export.

Range specified is [startTime, endTime), meaning the endTime is not actually included in the
range.

fileObject For use with the Export File Suite, to get and manipulate the file specified by the user.
timelineDataHandle used for the Timeline Functions.
reserveMetaDataSpaceAmount to reserve in a file for metadata storage.
maximumRenderQualityIf non-zero, the exporter should set SequenceRender_ParamsRec.inRenderQuality and

inDeinterlaceQuality to kPrRenderQuality_Max.
embedCaptionsNew in CC. If non-zero, the exporter should embed captions obtained from the Captioning Suite.
colorProfileAmount to reserve in a file for metadata storage.
exportColorSpaceIDAmount to reserve in a file for metadata storage.
maximumFileSizeAmount to reserve in a file for metadata storage.

52.2 exDoExportRec2

Selector: exSelExport

Provides general export settings. The exporter should retrieve the parameter settings from the Export Param Suite.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 exportAudio;
csSDK_int32 exportVideo;
PrTime startTime;
PrTime endTime;
csSDK_uint32 fileObject;
PrTimelineID timelineData;
csSDK_int32 reserveMetaDataSpace;
csSDK_int32 maximumRenderQuality;
csSDK_int32 embedCaptions;
ColorProfileRec colorProfile; // if color profile is␣

→˓valid, exporter should embed into output per format standards; for formats that set␣
→˓canEmbedColorProfile to True
PrSDKColorSpaceID exportColorSpaceID; // opaque color space ID that␣

→˓exporter should pass to the host when using color managed APIs
csSDK_int32 maximumFileSize; // if non-0, try to export␣

→˓a file not exceeding this size an possible adjust the TragetBitrate for this.
PrSDKLUTID exportLUTID;

} exDoExportRec2;

224 Chapter 52. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

exporterPluginIDThe host’s internal identifier for this exporter, used for various suite calls, such as in the Sequence
Render Suite and Sequence Audio Suite.

privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.

Indicates which format the exporter should write, since exporters can support multiple formats.
exportAudio If non-zero, export audio.
exportVideo If non-zero, export video.
startTime The start time of the sequence to export.
endTime The end time of the sequence to export. If startTime is 0, also the total durection to export.

Range specified is [startTime, endTime), meaning the endTime is not actually included in the
range.

fileObject For use with the Export File Suite, to get and manipulate the file specified by the user.
timelineDataHandle used for the Timeline Functions.
reserveMetaDataSpaceAmount to reserve in a file for metadata storage.
maximumRenderQualityIf non-zero, the exporter should set SequenceRender_ParamsRec.inRenderQuality and

inDeinterlaceQuality to kPrRenderQuality_Max.
embedCaptionsNew in CC. If non-zero, the exporter should embed captions obtained from the Captioning Suite.
colorProfileNew in 13.1. Color profile, to be embedded into output per format standards. For formats which

have set canEmbedColorProfile to true.
exportColorSpaceIDNew in 13.1. ID of the color space to be used. Must not be kPrSDKColorSpaceID_Invalid.
maximumFileSizeNew in 15.x. If non-zero, the Exporter should consider this as a ceiling for file size, and re-compress

as needed in order to meet that target.
exportLUTID New in 14.x. the LUT being used for export.

52.3 exExporterInfoRec

Selector: exSelStartup and exSelShutdown (starting in CS6)

Describe the exporter’s capabilities by filling out this structure during exSelStartup.

For each filetype, populate exExporterInfoRec and return exportReturnIterateExporter.

exSelStartup will then be resent. Repeat the process until there are no more file formats to describe, then return
exportReturn_IterateExporterDone.

The fileType indicates which format the exporter should currently work with in subsequent calls.

typedef struct {
csSDK_uint32 unused;
csSDK_uint32 fileType;
prUTF16Char fileTypeName[256];
prUTF16Char fileTypeDefaultExtension[256];
csSDK_uint32 classID;
csSDK_int32 exportReqIndex;
csSDK_int32 wantsNoProgressBar;
csSDK_int32 hideInUI;
csSDK_int32 doesNotSupportAudioOnly;
csSDK_int32 canExportVideo;
csSDK_int32 canExportAudio;
csSDK_int32 singleFrameOnly;

(continues on next page)

52.3. exExporterInfoRec 225

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

csSDK_int32 maxAudiences;
csSDK_int32 interfaceVersion;
csSDK_uint32 isCacheable;
csSDK_uint32 canConformToMatchParams;
csSDK_uint32 canEmbedCaptions;

} exExporterInfoRec;

226 Chapter 52. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

fileType The file format four character code (e.g. ‘AVIV’ = Video
for Windows, ‘MooV’ = QuickTime).

fileTypeName The localized display name for the fileype.
fileTypeDefaultExtension The default extension for the filetype. An exporter can

support multiple extensions per filetype, by implement-
ing exSelQueryExportFileExtension.

classID Class identifier for the module, differentiates between
exporters that support the same filetype and creates asso-
ciations between different Media Abstraction Layer plu-
gins.

exportReqIndex If an exporter supports multiple filetypes, this index will
be incremented by the host for each call, as the exporter
is requested to describe its capabilities for each filetype.
Initially zero, incremented by the host each time the ex-
porter returns exportReturn_IterateExporter.

wantsNoProgressBar If non-zero, the default exporter progress dialog will
be turned off, allowing the exporter to display its own
progress dialog.
The exporter also will not get exportReturn_Abort
errors from the host during callbacks – it must detect
an abort on its own, and return exportReturn_Abort
from exSelExport if the user aborts the export.

hideInUI Set this to non-zero if this filetype should only be used
for making preview files, and should not be visible as a
general export choice.

doesNotSupportAudioOnly Set this to non-zero for filetypes that do not support
audio-only exports.

canExportVideo Set this to non-zero if the exporter can output video.
canExportAudio Set this to non-zero if the exporter can output audio.
singleFrameOnly Set this to non-zero if the exporter makes single frames

(used by still image exporters).
maxAudiences
interfaceVersion Exporter API version that the plugin supports.
isCacheable New in CS5. Set this non-zero to have Premiere Pro

cache this exporter.
canConformToMatchParams New in CC. Set this to non-zero if the exporter wants to

support the Match Source button.
canEmbedCaptions New in CC. Set this to non-zero if the exporter can em-

bed Closed Captioning directly in the file.
flags New in 13.0. Will be some combination of the following

flag:
kExInfoRecFlag_None
kExInfoRecFlag_VideoOnlyExportNotSupported
exports only video and audio together
kExInfoRecFlag_PostEncodePublishNotSupported
exported result is a complex folder structure
or otherwise unsuitable for enabling upload
options

canEmbedColorProfile New in 11.1. Set this to non-zero if the exporter can
embed color profile into the resulting media file

supportsColorManagement New in 13.0. Set this to non-zero if the exporter supports
color management.

52.3. exExporterInfoRec 227

Premiere Pro C++ SDK Guide, Release 24.0

52.4 exExporterInstanceRec

Selector: exSelBeginInstance and exSelEndInstance

Provides access to the privateData for the indicated filetype, so that the exporter can allocate privateData and pass it to
the host, or deallocate it.

typedef struct {
csSDK_uint32 exporterPluginID;
csSDK_uint32 fileType;
void* privateData;

} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
fileType The file format four character code set by the exporter during exSelStartup.
privateData Data allocated and managed by the exporter.

52.5 exGenerateDefaultParamRec

Selector: exSelGenerateDefaultParams

Provides access to the privateData for the indicated filetype, so that the exporter can generate the default parameter set.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;

} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.

52.6 exParamButtonRec

Selector: exSelParamButton

Provides access to the privateData for the indicated filetype, and discloses the specific button hit by the user, since there
can be multiple button parameters.

228 Chapter 52. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 exportAudio;
csSDK_int32 exportVideo;
csSDK_int32 multiGroupIndex;
exParamIdentifier buttonParamIdentifier;

} exParamButtonRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
multiGroupIndex Discloses the index of the multi-group, containing the button hit by the user.
buttonParamIdentifier Discloses the parameter ID of the button hit by the user.

52.7 exParamChangedRec

Selector: exSelValidateParamChanged

Provides access to the privateData for the indicated filetype, and discloses the specific parameter changed by the user.

To notify the host that the plugin is changing other parameters, set rebuildAllParams to a non-zero value.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 exportAudio;
csSDK_int32 exportVideo;
csSDK_int32 multiGroupIndex;
exParamIdentifier changedParamIdentifier;
csSDK_int32 rebuildAllParams;

} exParamChangedRec;

exporterPluginIDThe host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
multiGroupIndexDiscloses the index of the multi-group, containing the parameter changed by the user.
changedParamIdentifierDiscloses the parameter ID of the parameter changed by the user.

May be empty if the changed item was exportAudio, exportVideo or the current multiGroupIndex.
rebuildAllParamsSet this to non-zero to tell the host to refresh ALL parameters using the latest provided information.

This can solve various problems when dynamically updating parameter visibility, valid ranges, etc.

52.7. exParamChangedRec 229

Premiere Pro C++ SDK Guide, Release 24.0

52.8 exParamSummaryRec

Selector: exSelGetParamSummary

Provides access to the privateData for the indicated filetype, and provides buffers for the exporter to fill in with a
localized summary of the parameters.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_int32 exportAudio;
csSDK_int32 exportVideo;
prUTF16Char videoSummary[256];
prUTF16Char audioSummary[256];
prUTF16Char bitrateSummary[256];

} exParamSummaryRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
videoSummary Fill these in with a line of a localized summary of the parameters.
audioSummary
bitrateSummary

52.9 exPostProcessParamsRec

Selector: exSelPostProcessParams

Provides access to the privateData for the indicated filetype.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 exportAudio;
csSDK_int32 exportVideo;
csSDK_int32 doConformToMatchParams;

} exPostProcessParamsRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
doConformToMatchParams New in CC.

230 Chapter 52. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

52.10 exQueryExportFileExtensionRec

Selector: exSelQueryExportFileExtension

Provides access to the privateData for the indicated filetype, and provides a buffer for the exporter to fill in with the file
extension.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
prUTF16Char outFileExtension[256];

} exQueryExportFileExtensionRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.
outFileExtension Provide the file extension here, given the current parameter settings.

52.11 exQueryOutputFileListRec

Selector: exSelQueryOutputFileList

Provides access to the privateData for the indicated filetype, and provides a pointer to a array of exOutputFileRecs
for the exporter to fill in with the file paths.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_uint32 numOutputFiles;
PrSDKString path;
exOutputFileRec *outputFileRecs;

} exQueryOutputFileListRec;

52.10. exQueryExportFileExtensionRec 231

Premiere Pro C++ SDK Guide, Release 24.0

exporterPluginID The host’s internal identifier for this exporter. Do not
modify.

privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter

during exSelStartup.
numOutputFiles On the first call to exSelQueryOutputFileList, pro-

vide the number of file paths here.
path New in CS5. Contains the primary intended destination

path provided by the host.
outputFileRecs An array of exOutputFileRecs.

On the second call to exSelQueryOutputFileList,
the path length (including trailing null) for each path.
On the third call, fill in the path of each exOutputFileRec.

typedef struct {
int pathLength;
prUTF16Char* path;

} exOutputFileRec;

52.12 exQueryOutputSettingsRec

Selector: exSelQueryOutputSettings

Provides access to the privateData for the indicated filetype, and provides a set of members for the exporter to fill in
with the current export settings.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 inMultiGroupIndex;
csSDK_int32 inExportVideo;
csSDK_int32 inExportAudio;
csSDK_int32 outVideoWidth;
csSDK_int32 outVideoHeight;
PrTime outVideoFrameRate;
csSDK_int32 outVideoAspectNum;
csSDK_int32 outVideoAspectDen;
csSDK_int32 outVideoFieldType;
double outAudioSampleRate;
PrAudioSampleType outAudioSampleType;
PrAudioChannelType outAudioChannelType;
csSDK_uint32 outBitratePerSecond;
csSDK_int32 outUseMaximumRenderPrecision;

} exQueryOutputSettingsRec;

232 Chapter 52. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

exporterPluginIDThe host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.
inMultiGroupIndexReturn the parameter settings of the multi-group with this index.
inExportVideo If non-zero, the current settings are set to export video.
inExportAudio If non-zero, the current settings are set to export audio.
outVideoWidth
outVideoHeight

Return each parameter setting, by getting the current value of the parameter using the Export
Param Suite.
Some settings, such as outVideoFieldType, may be implicit, for example if the format only
supports progressive frames.

outUseMaximumRenderPrecisionNew in CS6. If non-zero, renders will always be made at maximum bit-depth.

52.13 exQueryStillSequenceRec

Selector: exSelQueryStillSequence

Provides access to the privateData for the indicated filetype, and provides a set of members for the exporter to provide
information on how it would export the sequence of stills.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;
csSDK_int32 exportAsStillSequence;
PrTime exportFrameRate;

} exQueryStillSequenceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.
exportAsStillSequence Set this to non-zero to tell the host that the exporter can export the stills as a sequence.
exportFrameRate Set this to the frame rate of the still sequence.

52.14 exValidateOutputSettingsRec

Selector: exSelValidateOutputSettings

Provides access to the privateData for the indicated filetype, so that the exporter can validate the current parameter
settings.

typedef struct {
csSDK_uint32 exporterPluginID;
void* privateData;
csSDK_uint32 fileType;

} exExporterInstanceRec;

52.13. exQueryStillSequenceRec 233

Premiere Pro C++ SDK Guide, Release 24.0

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during exSelStartup.

52.15 exQueryExportColorSpaceRec

Selector: exSelQueryExportColorSpace

Provides access to the privateData for the indicated filetype, so that the exporter can validate the current parameter
settings.

typedef struct
{
csSDK_uint32 exporterPluginID;
void* privateData;
ColorSpaceRec outExportColorSpace;

} exQueryExportColorSpaceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
outExportColorSpace Structure describing the colorspace to be used during export. Check ColorSpaceRec for

details.

234 Chapter 52. Structure Descriptions

CHAPTER

FIFTYTHREE

SUITES

For information on how to acquire and manage suites, see SweetPea Suites.

53.1 Export File Suite

A cross-platform suite for writing to files on disk. Also provides a call to get the file path, given the file object.

Version 2 resolves a mismatch in seek modes in version 1, where fileSeekMode_End was handled as
fileSeekMode_Current and visa versa.

See PrSDKExportFileSuite.h.

53.2 Export Info Suite

53.2.1 GetExportSourceInfo

Get information on the source currently being exported.

prSuiteError (*GetExportSourceInfo)(
csSDK_uint32 inExporterPluginID,
PrExportSourceInfoSelector inSelector,
PrParam *outSourceInfo);

235

Premiere Pro C++ SDK Guide, Release 24.0

Value Type Description
kExportInfo_VideoWidthInt32 Width of source video
kExportInfo_VideoHeightInt32 Height of source video
kExportInfo_VideoFrameRatePrTimeFrame rate
kExportInfo_VideoFieldTypeInt32 One of the prFieldType values
kExportInfo_VideoDurationInt64 A PrTime value
kExportInfo_PixelAspectNumeratorInt32 Pixel aspect ratio (PAR) numerator
kExportInfo_PixelAspectDenominatorInt32 Pixel aspect ratio denominator
kExportInfo_AudioDurationInt64 A PrTime value
kExportInfo_AudioChannelsTypeInt32 One of the PrAudioChannelType values.

Returns 0 (which is undefined) if there’s no audio.
kExportInfo_AudioSampleRateFloat64
kExportInfo_SourceHasAudioBool Non-zero if source has audio
kExportInfo_SourceHasVideoBool Non-zero if source has video
kExportInfo_RenderAsPreviewBool Returns a non-zero value if currently rendering preview files.
kExportInfo_SequenceGUIDGuid A PrPluginID, which is a unique GUID for the sequence.
kExportInfo_SessionFilePathPrMem-

o-
ryPtr

A prUTF16Char array. The exporter should release the pointer using the Memory Man-
ager Suite.

kExportInfo_VideoPosterFrameTickTimeInt64 New in CS5. A PrTime value.
kExportInfo_SourceTimecodePrMem-

o-
ryPtr

New in CS5.0.2. The timecode of the source clip or sequence.
The sequence timecode is set by the Start Time of a sequence using the sequence wing-
menu. A pointer to a ExporterTimecodeRec structure.
The exporter should release the pointer using the Memory Manager Suite.

kExportInfo_UsePreviewFilesBool New in CC. Use this to check if the user has checked “Use Previews” in the Export Settings
dialog.
If so, if possible, reuse any preview files already rendered, which can be retrieved using
AcquireVideoSegmentsWithPreviewsID in the Video Segment Suite.

kExportInfo_NumAudioChannelsInt32 New in CC. Get the number of audio channels in a given source.
This can be used to automatically initialize the audio channel parameter in the Audio tab
of the Export Settings to match the source.

typedef struct {
csSDK_int64 mTimecodeTicks;
csSDK_int64 mTicksPerFrame;
bool mTimecodeStartPrefersDropFrame;

} ExporterTimecodeRec;

53.3 Export Param Suite

Specify all parameters for your exporter UI. See PrSDKExportParamSuite.h.

Also, see the SDK Export sample for a demonstration of how to use this suite.

To provide either a set of radio buttons or a drop-down list of choices, use AddConstrainedValuePair().

Adding two choices will result in a pair of radio buttons side-by-side.

Three or more choices will be displayed as a drop-down box.

Adding only one value will result in a hard-coded string.

236 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

In CS5, and later fixed in 5.0.2, there is an issue where width and height ranges aren’t correctly set.

You may notice this when adjusting the width and height in the Export Settings UI.

By unclicking the chain that constrains width and height ratio, you will be able to modify the width and height.

As a side-effect of this bug, if the exporter is used to render preview files in an Editing Mode, the user will be able to
choose any preview frame size between 24x24 and 10240x8192.

CS6 adds SetParamDescription(), to set tooltip strings for parameters.

CC adds MoveParam(), to move an existing parameter to a new location. This can be used for both standard parameters
and group parameters.

53.4 Export Progress Suite

For pull-model exporters. Report progress during the export. Also, handle the case where the user pauses or cancels
an export. See PrSDKExportProgressSuite.h.

53.5 Export Standard Param Suite

New in CS6. A suite for registering one of several common parameter sets, reducing parameter management code on
the plugin side.

53.5.1 AddStandardParams

Register a set of standard parameters to be used by the exporter.

Call during exSelGenerateDefaultParams.

prSuiteError (*AddStandardParams)(
csSDK_uint32 inExporterID,
PrSDKStdParamType inSDKStdParamType);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inSDKStdParamType Use one of the following:

enum PrSDKStdParamType {
SDKStdParams_Video,
SDKStdParams_Audio,
SDKStdParams_Still,
SDKStdParams_VideoBitrateGroup,
SDKStdParams_Video_NoRenderMax,
SDKStdParams_Video_AddRenderMax,
SDKStdParams_AudioTabOnly,
SDKStdParams_AudioBitrateGroup,
SDKStdParams_VideoWithSizePopup

};

53.4. Export Progress Suite 237

Premiere Pro C++ SDK Guide, Release 24.0

53.5.2 PostProcessParamNames

Call during exSelPostProcessParams.

prSuiteError (*PostProcessParamNames)(
csSDK_uint32 inExporterID,
PrAudioChannelType inSourceAudioChannelType);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inSourceAudioChannelTypePass in the source audio channel type, which can be queried from GetExportSourceInfo

in the Export Info Suite.

53.5.3 QueryOutputSettings

Call during exSelQueryOutputSettings.

prSuiteError (*QueryOutputSettings)(
csSDK_uint32 inExporterID,
exQueryOutputSettingsRec* outOutputSettings);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
outOutputSettings This structure will be filled out based on the standard parameter settings.

53.5.4 MakeParamSummary

Call during exSelGetParamSummary.

prSuiteError (*MakeParamSummary)(
csSDK_uint32 inExporterID,
csSDK_int32 inDoVideo,
csSDK_int32 inDoAudio,
prUTF16Char* outVideoDescription,
prUTF16Char* outAudioDescription);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inDoVideo Pass in exParamSummaryRec.exportVideo / exportAudio so that the summary will be set

based on whether video / audio are being exported.
inDoAudio
outVideoDescriptionThese will be filled out based on the standard parameter settings.
outAudioDescription

238 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.6 Exporter Utility Suite

New in CS6. Provides functions for push-model exporters, and also provides a way to register an export event (error,
warning, or info) to be displayed by the host and written to the log.

53.6.1 DoMultiPassExportLoop

Register the callback to be made to push video frames to the exporter. This function assumes that your exporter supports
exSelQueryOutputSettings, which will be called.

prSuiteError (*DoMultiPassExportLoop)(
csSDK_uint32 inExporterID,
const ExportLoopRenderParams* inRenderParams,
csSDK_uint32 inNumberOfPasses,
PrSDKMultipassExportLoopFrameCompletionFunction inCompletionFunction,
void* inCompletionParam);

53.6. Exporter Utility Suite 239

Premiere Pro C++ SDK Guide, Release 24.0

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inRenderParams Pass in the parameters that will be used for the render

loop that will push rendered frames via the provided call-
back inCompletionFunction.
inReservedProgressPreRender and
inReservedProgressPostRender should be set
to the amount of progress to be shown in any progress
bar before starting the render loop, and how much is
remaining after finishing the render loop.
These values default to zero.
typedef struct {
csSDK_int32 inRenderParamsSize;
csSDK_int32 inRenderParamsVersion;
PrPixelFormat inFinalPixelFormat;
PrTime inStartTime;
PrTime inEndTime;
float ␣

→˓inReservedProgressPreRender;
float ␣

→˓inReservedProgressPostRender;
bool ␣

→˓inHardwareResidentFrameOutputSupported;␣
→˓ // new in 14.x
} ExportLoopRenderParams;

inNumberOfPasses Set to 1, unless you need multipass encoding such as
two-pass or three-pass encoding.

inCompletionFunction Provide your own callback here, which will be called
when the host pushes rendered frames. Use the follow-
ing function signature:

typedef prSuiteError␣
→˓(*PrSDKMultipassExportLoop␣
→˓FrameCompletionFunction)(
csSDK_uint32 inWhichPass,
csSDK_uint32 inFrameNumber,
csSDK_uint32 inFrameRepeatCount,
PPixHand inRenderedFrame,
void* inCallbackData);

Currently, there is no simple way to ensure that pushed
frames survive longer than the life of the function call.
If you are interested in this capability, please contact us
and explain your need.

inCompletionParam Pass in a void * to the data you wish to send to your
inCompletionFunction above in inCallbackData.

240 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.6.2 ReportIntermediateProgressForRepeatedVideoFrame

Register the callback to be made to push video frames to the exporter.

This function assumes that your exporter supports exSelQueryOutputSettings, which will be called.

prSuiteError (*ReportIntermediateProgressForRepeatedVideoFrame)(
csSDK_uint32 inExporterID,
csSDK_uint32 inRepetitionsProcessedSinceLastUpdate);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inRepetitionsProcessedSinceLastUpdatePass in the number of repeated frames processed since the last call was

made, if any.

53.6.3 ReportEvent

Report an event to the host, for a specific encode in progress in the Adobe Media Encoder render queue or Premiere
Pro.

These events are displayed in the application UI, and are also added to the AME encoding log.

prSuiteError (*ReportEvent)(
csSDK_uint32 inExporterID,
csSDK_uint32 inEventType,
const prUTF16Char* inEventTitle,
const prUTF16Char* inEventDescription);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inEventType Use one of the types from the Error Suite:

• kEventTypeInformational,
• kEventTypeWarning, or
• kEventTypeError

inEventTitle Provide information about the event for the user.
inEventDescription

53.7 Palette Suite

A seldom-used suite for palettizing an image, for example, for GIFs. See PrSDKPaletteSuite.h.

53.7. Palette Suite 241

Premiere Pro C++ SDK Guide, Release 24.0

53.8 Sequence Audio Suite

Get audio from the host.

53.8.1 MakeAudioRenderer

Create an audio renderer, in preparation to get rendered audio from the host.

prSuiteError (*MakeAudioRenderer)(
csSDK_uint32 inPluginID,
PrTime inStartTime,
PrAudioChannelType inChannelType,
PrAudioSampleType inSampleType,
float inSampleRate,
csSDK_uint32* outAudioRenderID);

Parameter Description
inPluginID Pass in exporterPluginID from exDoExportRec.
inStartTime Start time for the audio requests.
inChannelType PrAudioChannelType enum value for the channel type needed.
inSampleType This should always be kPrAudioSampleType_32BitFloat. Other types are unsupported.
inSampleRate Samples per second.
outAudioRenderID This ID passed back is needed for subsequent calls to this suite.

53.8.2 ReleaseAudioRenderer

Release the audio renderer when the exporter is done requesting audio.

prSuiteError (*ReleaseAudioRenderer)(
csSDK_uint32 inPluginID,
csSDK_uint32 inAudioRenderID);

Parameter Description
inPluginID Pass in exporterPluginID from exDoExportRec.
inAudioRenderID The call will release the audio renderer with this ID.

53.8.3 GetAudio

Returns from the host the next contiguous requested number of audio sample frames, specified in inFrameCount, in
inBuffer as arrays of uninterleaved floating point values.

Returns suiteError_NoError if no error.

The plugin must manage the memory allocation of inBuffer, which must point to n buffers of floating point values of
length inFrameCount, where n is the number of channels.

When inClipAudio is non-zero, this parameter makes GetAudio clip the audio samples at +/- 1.0.

242 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

prSuiteError (*GetAudio)(
csSDK_uint32 inAudioRenderID,
csSDK_uint32 inFrameCount,
float** inBuffer,
char inClipAudio);

Parame-
ter

Description

inAudioRenderIDPass in the outAudioRenderID returned from MakeAudioRenderer().
This gives the host the context of the audio render.

inFrameCountThe number of audio frames to return in inBuffer.
The next contiguous audio frames will always be returned, unless ResetAudioToBeginning has
just been called.

inBuffer An array of float arrays, allocated by the exporter.
The host returns the samples for each audio channel in a separate array.

inClipAudio When true, GetAudio will return audio clipped at +/- 1.0. Otherwise, it will return unclipped audio.

53.8.4 ResetAudioToBeginning

This call will reset the position on the audio generation to time zero. This can be used for multipass encoding.

prSuiteError (*ResetAudioToBeginning)(
csSDK_uint32 inAudioRenderID);

53.8.5 GetMaxBlip

Returns the maximum number of audio sample frames that can be requested from one call to GetAudio in
maxBlipSize.

prSuiteError (*GetMaxBlip)(
csSDK_uint32 inAudioRenderID,
PrTime inTicksPerFrame,
csSDK_uint32* maxBlipSize);

53.9 Sequence Render Suite

Get rendered video from one of the renderers available to the host. This may use one of the host’s built-in renderers,
or a plugin renderer, if available For best performance, use the asynchronous render requests with the source media
prefetching calls, although synchronous rendering is available too.

Version 4, new in CS5.5, adds RenderVideoFrameAndConformToPixelFormat().

53.9. Sequence Render Suite 243

Premiere Pro C++ SDK Guide, Release 24.0

53.9.1 MakeVideoRenderer()

Create a video renderer, in preparation to get rendered video.

prSuiteError (*MakeVideoRenderer)(
csSDK_uint32 pluginID,
csSDK_uint32* outVideoRenderID
PrTime inFrameRate);

Parameter Description
pluginID Pass in exporterPluginID from exDoExportRec.
outVideoRenderID This ID passed back is needed for subsequent calls to this suite.
inFrameRate Frame rate, in ticks.

53.9.2 ReleaseVideoRenderer()

Release the video renderer when the exporter is done requesting video.

prSuiteError (*ReleaseVideoRenderer)(
csSDK_uint32 pluginID,
csSDK_uint32 inVideoRenderID);

Parameter Description
pluginID Pass in exporterPluginID from exDoExportRec.
inVideoRenderID The call will release the video renderer with this ID.

53.9.3 struct SequenceRender_ParamsRec

Fill this structure in before calling RenderVideoFrame(), QueueAsyncVideoFrameRender(), or
PrefetchMediaWithRenderParameters().

Note that if the frame aspect ratio of the request does not match that of the sequence, the frame will be letterboxed or
pillarboxed, rather than stretched to fit the frame.

typedef struct {
const PrPixelFormat* inRequestedPixelFormatArray;
csSDK_int32 inRequestedPixelFormatArrayCount;
csSDK_int32 inWidth;
csSDK_int32 inHeight;
csSDK_int32 inPixelAspectRatioNumerator;
csSDK_int32 inPixelAspectRatioDenominator;
PrRenderQuality inRenderQuality;
prFieldType inFieldType;
csSDK_int32 inDeinterlace;
PrRenderQuality inDeinterlaceQuality;
csSDK_int32 inCompositeOnBlack;

} SequenceRender_ParamsRec;

244 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

Member Description
inRequestedPixelFormatArrayAn array of PrPixelFormats that list your format preferences in order.
inRequestedPixelFormatArrayCountSize of the pixel format array.
inWidth Width to render at.
inHeight Height to render at.
inPixelAspectRatioNumeratorNumerator of the pixel aspect ratio.
inPixelAspectRatioDenominatorDenominator of the pixel aspect ratio.
inRenderQuality Use one of the PrRenderQuality enumerated values.
inFieldType Use one of the prFieldType constants.
inDeinterlace Set to non-zero, to force an explicit deinterlace. Otherwise, the renderer will use the output

field setting to determine whether to automatically deinterlace any interlaced sources.
inDeinterlaceQualityUse one of the PrRenderQuality enumerated values.
inCompositeOnBlack Set to non-zero, to composite the render on black.

53.9.4 struct SequenceRender_ParamsRecExt

Fill this structure in before calling RenderVideoFrame(), QueueAsyncVideoFrameRender(), or
PrefetchMediaWithRenderParameters().

Note that if the frame aspect ratio of the request does not match that of the sequence, the frame will be letterboxed or
pillarboxed, rather than stretched to fit the frame.

typedef struct {
const PrPixelFormat* inRequestedPixelFormatArray;
csSDK_int32 inRequestedPixelFormatArrayCount;
csSDK_int32 inWidth;
csSDK_int32 inHeight;
csSDK_int32 inPixelAspectRatioNumerator;
csSDK_int32 inPixelAspectRatioDenominator;
PrRenderQuality inRenderQuality;
prFieldType inFieldType;
csSDK_int32 inDeinterlace;
PrRenderQuality inDeinterlaceQuality;
csSDK_int32 inCompositeOnBlack;
PrSDKColorSpaceID inPrSDKColorSpaceID;

} SequenceRender_ParamsRecExt;

Member Description
inRequestedPixelFormatArrayAn array of PrPixelFormats that list your format preferences in order.
inRequestedPixelFormatArrayCountSize of the pixel format array.
inWidth Width to render at.
inHeight Height to render at.
inPixelAspectRatioNumeratorNumerator of the pixel aspect ratio.
inPixelAspectRatioDenominatorDenominator of the pixel aspect ratio.
inRenderQuality Use one of the PrRenderQuality enumerated values.
inFieldType Use one of the prFieldType constants.
inDeinterlace Set to non-zero, to force an explicit deinterlace. Otherwise, the renderer will use the output

field setting to determine whether to automatically deinterlace any interlaced sources.
inDeinterlaceQualityUse one of the PrRenderQuality enumerated values.
inCompositeOnBlack Set to non-zero, to composite the render on black.
inPrSDKColorSpaceIDIdentifies the color space being used.

53.9. Sequence Render Suite 245

Premiere Pro C++ SDK Guide, Release 24.0

53.9.5 struct SequenceRender_ParamsRecExt2

Fill this structure in before calling RenderVideoFrame(), QueueAsyncVideoFrameRender(), or
PrefetchMediaWithRenderParameters().

Note that if the frame aspect ratio of the request does not match that of the sequence, the frame will be letterboxed or
pillarboxed, rather than stretched to fit the frame.

typedef struct {
const PrPixelFormat* inRequestedPixelFormatArray;
csSDK_int32 inRequestedPixelFormatArrayCount;
csSDK_int32 inWidth;
csSDK_int32 inHeight;
csSDK_int32 inPixelAspectRatioNumerator;
csSDK_int32 inPixelAspectRatioDenominator;
PrRenderQuality inRenderQuality;
prFieldType inFieldType;
csSDK_int32 inDeinterlace;
PrRenderQuality inDeinterlaceQuality;
csSDK_int32 inCompositeOnBlack;
PrSDKColorSpaceID inPrSDKColorSpaceID;

PrSDKLUTID inPrSDKLUTID; // Added to␣
→˓support export LUT
} SequenceRender_ParamsRecExt2;

Member Description
inRequestedPixelFormatArrayAn array of PrPixelFormats that list your format preferences in order.
inRequestedPixelFormatArrayCountSize of the pixel format array.
inWidth Width to render at.
inHeight Height to render at.
inPixelAspectRatioNumeratorNumerator of the pixel aspect ratio.
inPixelAspectRatioDenominatorDenominator of the pixel aspect ratio.
inRenderQuality Use one of the PrRenderQuality enumerated values.
inFieldType Use one of the prFieldType constants.
inDeinterlace Set to non-zero, to force an explicit deinterlace. Otherwise, the renderer will use the output

field setting to determine whether to automatically deinterlace any interlaced sources.
inDeinterlaceQualityUse one of the PrRenderQuality enumerated values.
inCompositeOnBlack Set to non-zero, to composite the render on black.
inPrSDKColorSpaceIDNew in 13.0. Identifies the color space being used.
inPrSDKLUTID New in 14.4. Identifies the color space being used.

53.9.6 struct SequenceRender_GetFrameReturnRec

Returned from RenderVideoFrame() and passed by PrSDKSequenceAsyncRenderCompletionProc().

typedef struct {
void* asyncCompletionData;
csSDK_int32 returnVal;
csSDK_int32 repeatCount;
csSDK_int32 onMarker;
PPixHand outFrame;

} SequenceRender_GetFrameReturnRec;

246 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

Member Description
asyncCompletionDataPassed to PrSDKSequenceAsyncRenderCompletionProc() from

QueueAsyncVideoFrameRender().
Not used by RenderVideoFrame().

returnVal ErrNone, Abort, Done, or an error code.
repeatCount The number of repeated frames from this frame forward.

In the output file, this could be writing NULL frames, changing the current frame’s duration, or
whatever is appropriate according to the codec.

onMarker If non-zero, there is a marker on this frame.
outFrame Returned from RenderVideoFrame(). Not returned from

PrSDKSequenceAsyncRenderCompletionProc()

53.9.7 RenderVideoFrame()

The basic, synchronous call to get a rendered frame from the host.

Returns:

• suiteError_NoError if you can continue exporting,

• exportReturn_Abort if the user aborted the export,

• exportReturn_Done if the export has finished, or

• an error code.

prSuiteError (*RenderVideoFrame)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRec* inRenderParams,
PrRenderCacheType inCacheFlags,
SequenceRender_GetFrameReturnRec* getFrameReturn);

Parameter Description
inVideoRenderIDPass in the outVideoRenderID returned from MakeVideoRenderer().

This gives the host the context of the video render.
inTime The frame time requested.
inRenderParamsThe details of the render.
inCacheFlags One or more cache flags.
getFrameReturnPasses back a structure that contains info about the frame returned, and the rendered frame itself.

53.9.8 GetFrameInfo()

Gets information about a given frame.

Currently, SequenceRender_FrameInfoRec only contains repeatCount, which is the number of repeated frames
from this frame forward.

prSuiteError (*GetFrameInfo)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_FrameInfoRec* outFrameInfo);

53.9. Sequence Render Suite 247

Premiere Pro C++ SDK Guide, Release 24.0

53.9.9 SetAsyncRenderCompletionProc()

Register a notification callback for getting asynchronously rendered frames when the render completes.

asyncGetFrameCallback should have the signature described in PrSDKSequenceAsyncRenderCompletionProc
below.

prSuiteError (*SetAsyncRenderCompletionProc)(
csSDK_uint32 inVideoRenderID,
PrSDKSequenceAsyncRenderCompletionProc asyncGetFrameCallback,
long callbackRef);

Parameter Description
inVideoRenderIDPass in the outVideoRenderID returned from MakeVideoRenderer().

This will be passed to PrSDKSequenceAsyncRenderCompletionProc.
asyncGetFrameCallbackThe notification callback.
inCallbackRefA pointer holding data private to the exporter.

This could be, for example, a pointer to an exporter instance. This will also be passed to
PrSDKSequenceAsyncRenderCompletionProc.

53.9.10 PrSDKSequenceAsyncRenderCompletionProc()

Use this function signature for your callback used for async frame notification, passed to
SetAsyncRenderCompletionProc.

Error status (error or abort) is returned in inGetFrameReturn.

void (*PrSDKSequenceAsyncRenderCompletionProc)(
csSDK_uint32 inVideoRenderID,
void* inCallbackRef,
PrTime inTime,
PPixHand inRenderedFrame,
SequenceRender_GetFrameReturnRec *inGetFrameReturn);

Parameter Description
inVideoRenderIDThe outVideoRenderID that the exporter passed to SetAsyncRenderCompletionProc earlier.
inCallbackRefA pointer that the exporter sets using SetAsyncRenderCompletionProc().

This could be, for example, a pointer to an exporter instance.
inTime The frame time requested.
inRenderedFrameThe rendered frame. The exporter is reponsible for disposing of this PPixHand using the

Dispose() call in the PPix Suite.
inGetFrameReturnA structure that contains info about the frame returned, and it includes the

inAsyncCompletionData originally passed to QueueAsyncVideoFrameRender().

248 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.9.11 QueueAsyncVideoFrameRender()

Use this call rather than RenderVideoFrame() to queue up a request to render a specific frame asynchronously.

The rendering can happen on a separate thread or processor.

When the render is completed, the PrSDKSequenceAsyncRenderCompletionProc that was set using
SetAsyncRenderCompletionProc will be called.

prSuiteError (*QueueAsyncVideoFrameRender)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
csSDK_uint32* outRequestID,
SequenceRender_ParamsRec* inRenderParams,
PrRenderCacheType inCacheFlags,
void* inAsyncCompletionData);

Parameter Description
inVideoRenderID Pass in the outVideoRenderID returned from MakeVideoRenderer().

This gives the host the context of the video render.
inTime The frame time requested.
outRequestID Passes back a request ID, which. . . doesn’t seem to have any use.
inRenderParams The details of the render.
inCacheFlags One or more cache flags.
inAsyncCompletionDataThis data will be passed to the PrSDKSequenceAsyncRenderCompletionProc in

inGetFrameReturn.asyncCompletionData.

53.9.12 PrefetchMedia()

Prefetch the media needed to render this frame. This is a hint to the importers to begin reading media needed to render
this video frame.

prSuiteError (*PrefetchMedia)(
csSDK_uint32 inVideoRenderID,
PrTime inFrame);

53.9.13 PrefetchMediaWithRenderParameters()

Prefetch the media needed to render this frame, using all of the parameters used to render the frame.

This is a hint to the importers to begin reading media needed to render this video frame.

prSuiteError (*PrefetchMediaWithRenderParameters)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRec* inRenderParams);

53.9. Sequence Render Suite 249

Premiere Pro C++ SDK Guide, Release 24.0

53.9.14 CancelAllOutstandingMediaPrefetches()

Cancel all media prefetches that are still outstanding.

prSuiteError (*PrefetchMedia)(
csSDK_uint32 inVideoRenderID);

53.9.15 IsPrefetchedMediaReady()

Check on the status of a prefetch request.

prSuiteError (*IsPrefetchedMediaReady)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
prBool* outMediaReady);

53.9.16 MakeVideoRendererForTimeline()

Similar to MakeVideoRenderer, but for use by renderer plugins.

Creates a video renderer, in preparation to get rendered video from the host.

The TimelineID in question must refer to a top-level sequence.

prSuiteError (*MakeVideoRendererForTimeline)(
PrTimelineID inTimeline,
csSDK_uint32* outVideoRendererID);

53.9.17 MakeVideoRendererForTimelineWithFrameRate()

Similar to MakeVideoRendererForTimeline, with an additional frame rate parameter.

This is useful for the case of a nested multicam sequence.

prSuiteError (*MakeVideoRendererForTimelineWithFrameRate)(
PrTimelineID inTimeline,
PrTime inFrameRate,
csSDK_uint32* outVideoRendererID);

53.9.18 ReleaseVideoRendererForTimeline()

Similar to ReleaseVideoRenderer, but for use by renderer plugins. Release the video renderer when the renderer plugin
is done requesting video.

prSuiteError (*ReleaseVideoRendererForTimeline)(
csSDK_uint32 inVideoRendererID);

250 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.9.19 RenderVideoFrameAndConformToPixelFormat()

New in CS5.5. Similar to RenderVideoFrame., but conforms the resulting frame to a specific pixel format.

Allows an exporter to request a frame in a specific pixel format.

prSuiteError (*RenderVideoFrameAndConformToPixelFormat)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRec* inRenderParams,
PrRenderCacheType inCacheFlags,
PrPixelFormat inConformToFormat,
SequenceRender_GetFrameReturnRec* getFrameReturn);

53.9.20 MakeVideoRendererForTimelineWithStreamLabel()

New in CS6. Similar to MakeVideoRenderer, but is stream label-aware.

Allows an exporter to request rendered frames from multiple video streams.

prSuiteError (*MakeVideoRendererForTimelineWithStreamLabel)(
PrTimelineID inTimeline,
PrSDKStreamLabel inStreamLabel,
csSDK_uint32* outVideoRendererID);

53.9.21 RenderColorManagedVideoFrame()

Renders a frame of video, using the specified color management.

prSuiteError (*RenderColorManagedVideoFrame)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRecExt* inRenderParamsExt,
PrRenderCacheType inCacheFlags,
SequenceRender_GetFrameReturnRec* getFrameReturn);

53.9.22 QueueAsyncColorManagedVideoFrameRender()

Queues a render for a frame of video, using the specified color management.

prSuiteError (*QueueAsyncColorManagedVideoFrameRender)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
csSDK_uint32* outRequestID,
SequenceRender_ParamsRecExt* inRenderParamsExt,
PrRenderCacheType inCacheFlags,
void* inAsyncCompletionData);

53.9. Sequence Render Suite 251

Premiere Pro C++ SDK Guide, Release 24.0

53.9.23 PrefetchColorManagedMedia()

Pre-fetches a frame of color-managed media.

prSuiteError (*PrefetchColorManagedMedia)(
csSDK_uint32 inVideoRenderID,
PrTime inFrame,
PrSDKColorSpaceID inPrSDKColorSpaceID);

53.9.24 PrefetchColorManagedMediaWithRenderParameters()

Pre-fetches a frame of color-managed media, using the specified render parameters.

prSuiteError (*PrefetchColorManagedMediaWithRenderParameters)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRecExt* inRenderParamsExt);

53.9.25 RenderColorManagedVideoFrameAndConformToPixelFormat()

Renders a frame of color-managed media, to the specified pixel format.

prSuiteError (*RenderColorManagedVideoFrameAndConformToPixelFormat)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRecExt* inRenderParamsExt,
PrRenderCacheType inCacheFlags,
PrPixelFormat inConformToFormat,
SequenceRender_GetFrameReturnRec* getFrameReturn);

53.9.26 RenderColorManagedVideoFrame2()

Renders a frame of color-managed media, to the specified pixel format, using settings specified in SequenceRen-
der_ParamsRecExt2.

prSuiteError (*RenderColorManagedVideoFrame2)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRecExt2* inRenderParamsExt2,
PrRenderCacheType inCacheFlags,
SequenceRender_GetFrameReturnRec* outGetFrameReturn);

252 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.9.27 QueueAsyncColorManagedVideoFrameRender2()

Queues a request for a frame of color-managed media, to the specified pixel format, using settings specified in Se-
quenceRender_ParamsRecExt2.

prSuiteError (*QueueAsyncColorManagedVideoFrameRender2)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
csSDK_uint32* outRequestID,
SequenceRender_ParamsRecExt2* inRenderParamsExt2,
PrRenderCacheType inCacheFlags,
void* inAsyncCompletionData);

53.9.28 PrefetchColorManagedMediaWithRenderParameters2()

Pre-fetches a request for a frame of color-managed media, to the specified pixel format, using settings specified in
SequenceRender_ParamsRecExt2.

prSuiteError(*PrefetchColorManagedMediaWithRenderParameters2)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRecExt2* inRenderParamsExt2);

53.9.29 RenderColorManagedVideoFrameAndConformToPixelFormat2()

Renders a frame of color-managed media, to the specified pixel format, using settings specified in SequenceRen-
der_ParamsRecExt2.

prSuiteError (*RenderColorManagedVideoFrameAndConformToPixelFormat2)(
csSDK_uint32 inVideoRenderID,
PrTime inTime,
SequenceRender_ParamsRecExt2* inRenderParamsExt2,
PrRenderCacheType inCacheFlags,
PrPixelFormat inConformToFormat,
SequenceRender_GetFrameReturnRec* outGetFrameReturn);

53.10 PF Utility Suite

Utility functions for use by AE style effect plugins, running in Premiere Pro.

Version 11, new in 15.0, adds GetVideoResolutionString.

53.10. PF Utility Suite 253

Premiere Pro C++ SDK Guide, Release 24.0

53.10.1 GetFilterInstanceID()

Gets the filter ID for the current effect reference.

prSuiteError(*GetFilterInstanceID)(
PF_ProgPtr effect_ref,
A_long* outFilterInstanceID);

53.10.2 GetMediaTimecode()

Retrieves formatted timecode, as well as the currently active video frame.

prSuiteError(*GetMediaTimecode)(
PF_ProgPtr effect_ref,
A_long* outCurrentFrame,
PF_TimeDisplay* outTimeDisplay);

53.10.3 GetClipSpeed()

Retrieves the speed multiplier of the clip.

prSuiteError(*GetClipSpeed)(
PF_ProgPtr effect_ref,
double* speed);

53.10.4 GetClipDuration()

Retrieves the duration of the clip.

prSuiteError(*GetClipDuration)(
PF_ProgPtr effect_ref,
A_long* frameDuration);

53.10.5 GetClipStart()

Retrieves the start time of the clip.

prSuiteError(*GetClipStart)(
PF_ProgPtr effect_ref,
A_long* frameDuration);

254 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.10.6 GetUnscaledClipDuration()

Retrieves the duration of the clip, unaffected by any speed or retiming changes.

prSuiteError(*GetUnscaledClipDuration)(
PF_ProgPtr effect_ref,
A_long* frameDuration);

53.10.7 GetUnscaledClipStart()

Retrives the start time of the clip, unaffected by any speed or retiming changes.

prSuiteError(*GetUnscaledClipStart)(
PF_ProgPtr effect_ref,
A_long* frameDuration);

53.10.8 GetTrackItemStart()

Gets the start time of the track item.

prSuiteError(*GetTrackItemStart)(
PF_ProgPtr effect_ref,
A_long* frameDuration);

53.10.9 GetMediaFieldType()

Retrieves the filed type in use with the media.

prSuiteError(*GetMediaFieldType)(
PF_ProgPtr effect_ref,
prFieldType* outFieldType); // prFieldsNone, prFieldsUpperFirst,␣

→˓prFieldsLowerFirst, prFieldsUnknown

53.10.10 GetMediaFrameRate()

Gets the number of ticks per frame, for the media.

prSuiteError(*GetMediaFrameRate)(
PF_ProgPtr effect_ref,
PrTime* outTicksPerFrame);

53.10. PF Utility Suite 255

Premiere Pro C++ SDK Guide, Release 24.0

53.10.11 GetContainingTimelineID()

Gets the ID of the timeline containing the clip to which the effect is applied.

prSuiteError(*GetContainingTimelineID)(
PF_ProgPtr effect_ref,
PrTimelineID* outTimelineID);

53.10.12 GetClipName()

Gets the name of the clip to which the effect is applied (or the master clip).

prSuiteError(*GetClipName)(
PF_ProgPtr effect_ref,
A_Boolean inGetMasterClipName,
PrSDKString* outSDKString);

53.10.13 EffectWantsCheckedOutFramesToMatchRenderPixelFormat()

Indicates that the effect wants to received checked out frames, in the same format used for destination rendering.

prSuiteError(*EffectWantsCheckedOutFramesToMatchRenderPixelFormat)(
PF_ProgPtr effect_ref);

53.10.14 EffectDependsOnClipName()

Indicates (based on second parameter) whether the effect depends on the name of the clip to which it is applied.

prSuiteError(*EffectDependsOnClipName)(
PF_ProgPtr effect_ref,
A_Boolean inDependsOnClipName);

53.10.15 SetEffectInstanceName()

prSuiteError(*SetEffectInstanceName)(
PF_ProgPtr effect_ref,
const PrSDKString* inSDKString);

53.10.16 GetFileName()

Retrieves the name of the media file to which the effect instance is applied.

prSuiteError(*GetFileName)(
PF_ProgPtr effect_ref,
PrSDKString* outSDKString);

256 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.10.17 GetOriginalClipFrameRate()

Retrieves the original (non-interpreted, un-re-timed) frame rate, of the media to which the effect instance is applied.

prSuiteError(*GetOriginalClipFrameRate)(
PF_ProgPtr effect_ref,
PrTime* outTicksPerFrame);

53.10.18 GetSourceTrackMediaTimecode()

Retrieves the source media timecode for the specified frame within the specified layer, with or without transforms and
start time offsets applied.

prSuiteError(*GetSourceTrackMediaTimecode)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
bool inApplyTransform,
bool inAddStartTimeOffset,
A_long* outCurrentFrame);

53.10.19 GetSourceTrackClipName()

Retrieves the name of the layer in use by the effect instance.

prSuiteError(*GetSourceTrackClipName)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
A_Boolean inGetMasterClipName,
PrSDKString* outSDKString);

53.10.20 GetSourceTrackFileName()

Retrieves the file name of the source track item for the specified layer parameter.

prSuiteError(*GetSourceTrackFileName)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
PrSDKString* outSDKString);

53.10.21 EffectDependsOnClipName2()

Specifies whether the effect instance depends on the specified layer parameter.

prSuiteError(*EffectDependsOnClipName2)(
PF_ProgPtr effect_ref,
A_Boolean inDependsOnClipName,
csSDK_uint32 inLayerParamIndex);

53.10. PF Utility Suite 257

Premiere Pro C++ SDK Guide, Release 24.0

53.10.22 GetMediaTimecode2()

Retrieves formatted timecode and current frame number, with or without trims applied.

prSuiteError(*GetMediaTimecode2)(
PF_ProgPtr effect_ref,
bool inApplyTrim,
A_long* outCurrentFrame,
PF_TimeDisplay* outTimeDisplay);

53.10.23 GetSourceTrackMediaTimecode2()

Given a specific sequence time, retrieves the source track media timecode for the specified layer parameter.

prSuiteError(*GetSourceTrackMediaTimecode2)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
bool inApplyTransform,
bool inAddStartTimeOffset,
PrTime inSequenceTime,
A_long* outCurrentFrame);

53.10.24 GetSourceTrackClipName2()

Retrieves the clip name used by the specific layer parameter.

prSuiteError(*GetSourceTrackClipName2)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
A_Boolean inGetMasterClipName,
PrSDKString* outSDKString,
PrTime inSequenceTime);

53.10.25 GetSourceTrackFileName2()

Retreives the clip name in use by the specified layer parameter.

prSuiteError(*GetSourceTrackFileName2)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
PrSDKString* outSDKString,
PrTime inSequenceTime);

258 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.10.26 GetCommentString()

Retrieves the comment string associated with the specified source track item, at the specified time.

prSuiteError(*GetCommentString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.27 GetLogNoteString()

Retrieves the log note associated with the source track, at the specified time.

prSuiteError(*GetLogNoteString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.28 GetCameraRollString()

Retrieves the log note associated with the source track, at the specified time.

prSuiteError(*GetCameraRollString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.29 GetClientMetadataString()

Retrieves the metadata string associated with the source track, at the specified time.

prSuiteError(*GetClientMetadataString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.30 GetDailyRollString()

Retrieves the daily roll string associated with the source track, at the specified time.

prSuiteError(*GetDailyRollString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10. PF Utility Suite 259

Premiere Pro C++ SDK Guide, Release 24.0

53.10.31 GetDescriptionString()

Retrieves the daily roll string associated with the source track, at the specified time.

prSuiteError(*GetDescriptionString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.32 GetLabRollString()

Retrieves the lab roll string associated with the source track, at the specified time.

prSuiteError(*GetLabRollString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.33 GetSceneString()

Retrieves the scene string associated with the source track, at the specified time.

prSuiteError(*GetSceneString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.34 GetShotString()

Retrieves the shot string associated with the source track item, at the specified time.

prSuiteError(*GetShotString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.35 GetTapeNameString()

Retrieves the tape name string associated with the source track item, at the specified time.

prSuiteError(*GetTapeNameString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

260 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.10.36 GetVideoCodecString()

Retrieves a string representing the video codec associated with the source track item, at the specified time.

prSuiteError(*GetVideoCodecString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.37 GetGoodMetadataString()

Retrieves a string representing the “good” state of the source track item, at the specified time.

prSuiteError(*GetGoodMetadataString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.38 GetSoundRollString()

Retrieves a string representing the “sound roll” state of the source track item, at the specified time.

prSuiteError(*GetSoundRollString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

53.10.39 GetSequenceTime()

Retrieves the timebase of the sequence in which the effect is applied.

prSuiteError(*GetSequenceTime)(
PF_ProgPtr inEffectRef,
PrTime* outSequenceTime);

53.10.40 GetSoundTimecode()

Retrieves the frame of the specified source time.

prSuiteError(*GetSoundTimecode)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
A_long* outCurrentFrame);

53.10. PF Utility Suite 261

Premiere Pro C++ SDK Guide, Release 24.0

53.10.41 GetOriginalClipFrameRateForSourceTrack()

Retrieves the original “ticks per frame” for the specified source track.

prSuiteError(*GetOriginalClipFrameRateForSourceTrack)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime* outTicksPerFrame);

53.10.42 GetMediaFrameRateForSourceTrack()

Retrieves the media frame rate for the specified source track.

prSuiteError(*GetMediaFrameRateForSourceTrack)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrTime* outTicksPerFrame);

53.10.43 GetSourceTrackMediaActualStartTime()

Retrieves the start time of the specified layer parameter.

prSuiteError(*GetSourceTrackMediaActualStartTime)(
PF_ProgPtr inEffectRef,
csSDK_uint32 inLayerParamIndex,
PrTime inSequenceTime,
PrTime* outClipActualStartTime);

53.10.44 IsSourceTrackMediaTrimmed()

Retrieves whether the source track item has been trimmed.

prSuiteError(*IsSourceTrackMediaTrimmed)(
PF_ProgPtr inEffectRef,
csSDK_uint32 inLayerParamIndex,
PrTime inSequenceTime,
bool* outTrimApplied);

53.10.45 IsMediaTrimmed()

Retrieves whether the track item has been trimmed.

prSuiteError(*IsMediaTrimmed)(
PF_ProgPtr inEffectRef,
PrTime inSequenceTime,
bool* outTrimApplied);

262 Chapter 53. Suites

Premiere Pro C++ SDK Guide, Release 24.0

53.10.46 IsTrackEmpty()

Retrieves whether, for the specified layer parameter, the track is empty.

prSuiteError(*IsTrackEmpty)(
PF_ProgPtr inEffectRef,
csSDK_uint32 inLayerParamIndex,
PrTime inSequenceTime,
bool* outIsTrackEmpty);

53.10.47 IsTrackItemEffectAppliedToSynthetic()

Retrieves whether the effect is applied to a track item backed by a synthetic importer.

prSuiteError(*IsTrackItemEffectAppliedToSynthetic)(
PF_ProgPtr inEffectRef,
bool* outIsTrackItemEffectAppliedToSynthetic);

53.10.48 GetSourceTrackCurrentMediaTimeInfo()

Retrieves the current media time, including ticks per frame and a formatted string representing that time.

prSuiteError(*GetSourceTrackCurrentMediaTimeInfo)(
PF_ProgPtr effect_ref,
csSDK_uint32 inLayerParamIndex,
bool inUseSoundTimecodeAsStartTime,
PrTime inSequenceTime,
PrTime* outCurrentMediaTime,
PrTime* outMediaTicksPerFrame,
PF_TimeDisplay* outMediaTimeDisplay);

53.10.49 GetSequenceZeroPoint()

Retrieves the zero point (start time) of the sequence in which the effect is applied.

prSuiteError(*GetSequenceZeroPoint)(
PF_ProgPtr inEffectRef,
PrTime* outZeroPointTime);

53.10.50 GetSourceTrackCurrentClipDuration()

Retrieves the duration of the clip, at the specified layer index, at inSequenceTime.

prSuiteError(*GetSourceTrackCurrentClipDuration)(
PF_ProgPtr inEffectRef,
csSDK_uint32 inLayerParamIndex,
PrTime inSequenceTime,
PrTime* outClipDuration);

53.10. PF Utility Suite 263

Premiere Pro C++ SDK Guide, Release 24.0

53.10.51 GetSequenceDuration()

Retrieves the duration of the sequence in which the effect is applied.

prSuiteError(*GetSequenceDuration)(
PF_ProgPtr inEffectRef,
PrTime* outSequenceDuration);

/*
** Get the video resolution string, formatted as a 'width x height',
** of the clip (ie, track item) at inSequenceTime on inSourceTrack.
** Set inSourceTrack to -1 to query the top-most clip at inSequenceTime
** (only if effect is on an adjustment layer)
*/

53.10.52 GetVideoResolutionString()

Retrieve a string representing the dimensions of the track item to which the effect is applied.

prSuiteError(*GetVideoResolutionString)(
PF_ProgPtr inEffectRef,
int32_t inSourceTrack,
PrTime inSequenceTime,
PrSDKString* outSDKString);

264 Chapter 53. Suites

CHAPTER

FIFTYFOUR

ADDITIONAL DETAILS

54.1 Multiplexer Tab Ordering

If your exporter provides a Multiplexer tab like some of the built-in exporters do, you may find that it appears after the
Video and Audio tab, rather than before those tabs as in the case of our exporters. The key is to use the following define
as the parameter identifer for the multiplexer tab group:

#define ADBEMultiplexerTabGroup "ADBEAudienceTabGroup"

54.2 Creating a Non-Editable String in the Parameter UI

During exSelGenerateDefaultParams, add a parameter with exNewParamInfo.flags = exParamFlag_none.

Then during exSelPostProcessParams, call AddConstrainedValuePair() in the Export Param Suite.

If you only add one value pair, then the parameter will be a non-editable string.

In the case of the SDK Exporter sample, it adds two, which appear as a pair of radio buttons side-by-side.

54.3 Guidelines for Exporters in Premiere Elements

First, make sure you are building the exporter using the right SDK. Premiere Elements 8 requires the Premiere Pro CS4
SDK. The next version of Premiere Elements will likely use the CS5 SDK.

54.3.1 Exporter Preset

For an exporter to show up in the Premiere Elements UI, you’ll need to create and install a preset in a specific location:

1) Create a folder named “OTHERS” in [App installation folder]/sharingcenter/Presets/pc/

2) Create a sub-folder with your name (e.g. MyCompany) under OTHERS and place the preset file (.epr)
in it. The final path of the preset file should be something like [App installation folder]/ sharingcen-
ter/Presets/pc/OTHERS/MyCompany/MyPreset.epr

3) Relaunch Premiere Elements.

a. Add a clip to the timeline

265

Premiere Pro C++ SDK Guide, Release 24.0

b. Goto the “Share” tab

c. Under that choose “Personal Computer”

d. You should see the “Others – 3rd Party Plugins” in the list of formats. Select this.

e. Your preset should be seen in the drop-down.

54.3.2 Return Values

Premiere Elements 8 uses a slightly different definition of the return values. Use the following definition instead:

enum {
exportReturn_ErrNone = 0,
exportReturn_Abort,
exportReturn_Done,
exportReturn_InternalError,
exportReturn_OutputFormatAccept,
exportReturn_OutputFormatDecline,
exportReturn_OutOfDiskSpace,
exportReturn_BufferFull,
exportReturn_ErrOther,
exportReturn_ErrMemory,
exportReturn_ErrFileNotFound,
exportReturn_ErrTooManyOpenFiles,
exportReturn_ErrPermErr,
exportReturn_ErrOpenErr,
exportReturn_ErrInvalidDrive,
exportReturn_ErrDupFile,
exportReturn_ErrIo,
exportReturn_ErrInUse,
exportReturn_IterateExporter,
exportReturn_IterateExporterDone,
exportReturn_InternalErrorSilent,
exportReturn_ErrCodecBadInput,
exportReturn_ErrLastErrorSet,
exportReturn_ErrLastWarningSet,
exportReturn_ErrLastInfoSet,
exportReturn_ErrExceedsMaxFormatDuration,
exportReturn_VideoCodecNeedsActivation,
exportReturn_AudioCodecNeedsActivation,
exportReturn_IncompatibleAudioChannelType,
exportReturn_Unsupported = -100

};

The red values are unique to Premiere Elements 8, and shifted the subsequent return values 2 values higher than their
definition in the Premiere Pro SDK.

266 Chapter 54. Additional Details

CHAPTER

FIFTYFIVE

TRANSMITTERS

This API provides support for pushing video, audio, and closed captions to external hardware. Transmitters can be
specified by the user in Preferences > Playback. Other plugins such as importers and effects with settings preview
dialogs can send video out to the active transmitter, opening up new possibilities for hardware monitoring. Transmit
plugins are supported in Premiere Pro, After Effects (starting in CC 2014), and Character Animator.

When a new transmitter instance is created, it is asked to describe the format(s) it wishes to receive the rendered video in.
A transmitter plugin can request different formats depending on the source clip or timeline format. The host application
will handle all the conversions to the desired video format. As an example, a transmitter instance may specify that it
can only handle a fixed width and height, but any pixel format. Besides video conversions, the host handles scheduling
for prefetching the media and asynchronous rendering.

A transmitter may leave the audio to be played by the host, through the system’s sound drivers (ASIO or CoreAudio).
Or, if a transmitter wants to handle the audio itself to send it to the external hardware, it can request audio using
GetNextAudioBuffer in the Playmod Audio Suite.

On playback, the host provides the transmitter with a clock callback, which the transmitter must call to update the host
with the new time every frame. This allows the transmitter to orchestrate the audio/video sync.

Transmitters can use the Captioning Suite to get any closed captions for the sequence.

Transmitters do not need to call the Playmod Device Controller suite to handle Export to Tape. This is handled at the
player level.

55.1 What’s New in Premiere Pro 24.0?

Support for additional audio output devices has been added.

55.2 What’s New in Premiere Pro CS6.0.2?

A transmitter can now provide strings to label its audio channels, in tmAudioMode.outOutputAudioNames. These
strings will be used for the Audio Output Mapping preferences, rather than the default strings.

267

Premiere Pro C++ SDK Guide, Release 24.0

268 Chapter 55. Transmitters

CHAPTER

FIFTYSIX

TRANSMITTER BASICS

56.1 Basic Organization

A transmitter module can define multiple plugins. Each plugin can appear in the Playback Preferences as an option for
video playback and/or audio playback. Only one transmitter can be used for audio, since the transmitter used for audio
drives the clock. Multiple transmitters may be selected for video simultaneously.

When active, multiple instances of a single plugin can be created. An instance is created to display a clip or sequence.
Hardware access is regulated through ActivateDeactivate. Only an active instance should access the hardware.

56.2 Video Formats

Specify which video format(s) you wish to receive during QueryVideoMode. To simplify your plugin, be as specific as
possible, and allow the host to perform the conversion asynchronously ahead of time. Packed and compressed formats
are also supported. If multiple formats are specified, the closest will be selected at render time. If your transmitter
would benefit from on-GPU frames, please let us know.

When sent QueryVideoMode, the transmitter is informed about the clip/sequence video attributes by being passed a
tmInstance pointer. So, for example, if the transmitter instance is constructed to support a 1920x1080 timeline, it can
report that same size back to the host application, so that it will not have to handle any scaling. If, for example, it does
handle scaling, and it is constructed to handle a 1440x1080 timeline, it can report 1440x1080 and handle the scaling
itself. In this way you can choose a single fixed size depending on the timeline.

When video frames are pushed to the transmitter, properties like pixel format may change on a segment-by-segment
basis depending on the source footage. Other properties like size may change based on the current fractional resolution,
which may differ between scrubbing and stopped.

56.3 Fractional Resolution

In the Premiere Pro Source and Program Monitors, the user can choose independent resolutions for rendering during
playback and paused modes. For example, it is common to have the playback resolution set to half, and paused resolution
set to full.

If an output card has a hardware scaler, the transmit plugin can declare support for fractional resolutions. For example,
for a 1920x1080 instance, it could declare support for not only

269

Premiere Pro C++ SDK Guide, Release 24.0

1920x1080, but also 960x540, 480x270, etc. This will allow the renderer to skip the step of rescaling back up to full
resolution after rendering at a fractional resolution. If however, the plugin only declares support for full resolution, the
renderer will scale the video back up before pushing it to the transmitter.

56.4 Audio Format

During QueryAudioMode, a transmitter will be told how many channels the instance has. The transmitter should change
that value based on what it can support and then make sure the buffers it provides match that. Although Premiere Pro
can support 32 channels of audio, transmitters can only support up to 16 channels of audio.

As of CS6, sequences will currently always report audio available in CreateInstance, even if empty. An example of
somewhere that a transmitter will be called with no audio is for video output from the RED settings dialog, which is
video only.

A transmitter should call GetNextAudioBuffer only when inAudioActive is passed as true to ActivateDeactivate.

56.5 Frame Rate

For framerate, video will be pushed to you at the rate of the timeline. This was chosen because of the wide variety in
conversion policies, including pulldown, frame duplication, etc.

56.6 Dropped Frames

If the host cannot keep up rendering, it will send duplicate frames with PushVideo. If you receive a frame that cannot
be sent out to hardware on time, notify the host using inDroppedFrame Callback in tmPlaybackClock. In Premiere Pro,
the user can turn on the Dropped Frame Indicator to see the total number of frames that were dropped either because
the host couldn’t keep up, or the hardware couldn’t keep up.

56.7 Sync Between Application UI and Hardware Output

Naturally there is some latency between the time the host sends frames to be displayed on the output, and the time it can
actually be displayed. Use tmVideoMode.outLatency to specify the latency. For example, if a transmitter specifies 5
frames of latency, when the user starts playback, the host will send 5 frames of video to the transmitter before sending
StartPlaybackClock. This allows time for the transmitter to send frames to the hardware output in advance, so that the
hardware output will be in sync with the monitor in the host application UI.

When the user is scrubbing in the timeline, send the video frames as fast as possible to the output. The host application
UI will not wait for the hardware output to catch up, and currently as of

6.0.1 there may be a noticable latency. To reduce the scrubbing latency as much as possible, when scrubbing or stopped
the transmitter should cancel any frames it has pending to immediately display the new one.

270 Chapter 56. Transmitter Basics

Premiere Pro C++ SDK Guide, Release 24.0

56.8 Dog Ears

Turn on dog ears to view statistics about the frames being sent to the transmitter. This is useful to view information
such as pixel formats and much more. Note that this mode may result it duplicate PushVideo calls made for a single
frame.

56.9 Closed Captioning

This captioning data is attached to a sequence by the user via menu items in the Sequence menu. In the Program Monitor,
the Closed Captioning Display options in the fly-out menu give the user control over the display. The hardware should
always transmit any Closed Captioning data, and the user can go through the hardware monitor’s on-screen display
menu to choose which caption track to view. The closed captioning data is accessible using the new Captioning Suite.
Use this data for the hardware output.

56.10 Driving Transmitters from Other Plugins

Transmitters can be driven by many areas of the Premiere Pro interface. Currently, they are called to show frames from
the Program Monitor and Source Monitor. But other types of plugins can use the Transmit Invocation Suite to push
frames to transmitters. For example, an effect or titler with a modal setup dialog could push frames to the output.

56.11 Entry Point

This entry point function will be called once on load, and once on unload.

tmResult (*tmEntryFunc)(
csSDK_int32 inInterfaceVersion,
prBool inLoadModule,
piSuitesPtr piSuites,
tmModule* outModule)

A tmModule is a structure of function pointers, which the transmitter implements.

56.8. Dog Ears 271

Premiere Pro C++ SDK Guide, Release 24.0

272 Chapter 56. Transmitter Basics

CHAPTER

FIFTYSEVEN

TMMODULE FUNCTIONS

Fill in 0 for any unsupported calls. Thread safety is defined per-module, only a single thread will enter a module at a
time.

273

Premiere Pro C++ SDK Guide, Release 24.0

Member Description

Startup Initialize a transmitter, fill in basic plugin info, allocate
memory to hold user settings and other data.

::

tmResult (*Startup)(
tmStdParms* ioStdParms,
tmPluginInfo* outPluginInfo);

tmResult_ContinueIterate may be returned to
support multiple transmit plugins within the same
module.

ioPrivatePluginData, ioSerializedPluginData
& ioSerializedPluginDataSize may be written
from Startup.

Shutdown Terminate a transmitter.

::

tmResult (*Shutdown)(
tmStdParms* ioStdParms);

Dispose of ioPrivatePluginData if previously
allocated in Startup.

QueryAudioMode Describe the audio modes supported by the transmitter,
one at a time.

::

tmResult (*QueryAudioMode)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
csSDK_int32 inQueryIterationIndex,
tmAudioMode* outAudioMode);

Note that currently one audio mode is currently
supported. You can convert between audio formats
using the Audio Suite.

QueryVideoMode Describe the video modes supported by the transmitter,
one at a time.

::

tmResult (*QueryVideoMode)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
csSDK_int32 inQueryIterationIndex,
tmVideoMode* outVideoMode);

The video sent later in PushVideo will be one of the
formats specified here.

SetupDialog Display your own modal settings dialog.

::

tmResult (*SetupDialog)(
tmStdParms* ioStdParms,
prParentWnd inParent);

Will only be called if the plugin returned
outHasSetup.

Save any settings to ioSerializedPluginData and if
needed update ioSerializedPluginDataSize.

NeedsReset will be invoked after this call, to allow
your transmitter a chance to reset all open plugins and
startup with the new settings.

NeedsReset Will be called regularly on the first plugin of a module
to allow rebuilding on state changes.

::

tmResult (*NeedsReset)(
const tmStdParms* inStdParms,
prBool* outResetModule);

If the passed in settings differ enough from the created
settings, or if the settings on the hardware itself have
changed, the transmitter should specify a reset is
needed.

If outResetModule is set to true, all open plugins will
be shutdown and started up again.

CreateInstance Creates an instance of a transmitter.

::

tmResult (*CreateInstance)(
const tmStdParms* inStdParms,
tmInstance* ioInstance);

inPlayID and inTimelineID may be 0 if not driven
by a player.

Multiple instances may be created at the same time.

Allocate ioPrivateInstanceData.

DisposeInstance Dispose an instance of a transmitter.

::

tmResult (*DisposeInstance)(
const tmStdParms* inStdParms,
tmInstance* ioInstance);

Any ioPrivateInstanceData should be disposed.

ActivateDeactivate Activate or deactivate a transmitter instance, for
example during application suspend or switching
between monitors.

::

tmResult (*ActivateDeactivate)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
PrActivationEvent inActivationEvent,
prBool inAudioActive,
prBool inVideoActive);

Transmitters should manage hardware access with
these calls, not Startup/Shutdown, since it is valid for
multiple plugins to be simultaneously active for the
same device.

Audio and video may be independently activated.

StartPlaybackClock Start a clock for playback.

::

tmResult (*StartPlaybackClock)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
const tmPlaybackClock* inClock);

This will be sent not only when starting playback, but
also for scrubbing.

Will only be called if the transmitter returned
outHasClock.

The provided callback must be called each time the
time changes, for example once for each frame in
response to PushVideo.

Start may be called multiple times without a stop in
between to update playback parameters, for example if
the speed changes during playback.

Invoke the callback immediately during
StartPlaybackClock with a negative number for
preroll but do not use this to wait for frames.

If video latency is specified, up to the latency’s amount
of frame marked as playmode_Playing will be sent
before StartPlaybackClock is called.

StopPlaybackClock Stop a clock for playback.

::

tmResult (*StopPlaybackClock)(
const tmStdParms* inStdParms,
const tmInstance* inInstance);

PushVideo Asynchronously pushes a video frame to a transmitter
instance.

::

tmResult (*PushVideo)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
const tmPushVideo* inPushVideo);

Will only be called if the transmitter returned
outHasVideo.

The list of video frames passed to the transmitter will
be negotiated based on the properties returned from
QueryVideoMode.

The transmitter is responsible for disposing of all
passed in PPixes.

The instance will be created with the properties of the
creating video segments which may differ from the
actual frames that will be sent to the transmitter.

For example, if a sequence is being played at 1/2
resolution, the instance will be created with the
dimensions of the sequence, but the frames rendered
and sent to the transmitter will be at 1/2.

These properties may change by segment, for example
if your transmitter supports multiple pixel formats,
different segments may render to different pixel
formats.

StartPushAudio Asynchronously pushes audio samples to a transmitter
instance.

::

tmResult (*StartPushAudio)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
PrTime inStartTime,
PrTime inOutTime,
prBool inLoop,
prBool inScrubbing,
csSDK_int32* outSamplesPerFrame);

Initializes the device for subsequent PushAudio() calls.
Will only be called if the transmitter returned
outPushAudioAvailable.
Device will be enabled for a “secondary” mode where
audio from the “primary” or “clock” device, is pushed
to a secondary device; very useful for remote devices.
Unlick StartPlaybackClock(), StartPushAudio() is only
called once, until StopPushAudio() is called.

PushAudio Asynchronously pushes audio samples to a transmitter
instance. Note: PushAudio() may be called even if
another API is called at the same time.

::

tmResult (*PushAudio)(
const tmStdParms* inStdParms,
const tmInstance* inInstance,
const tmPushAudio* inPushAudio);

StopPushAudio StopPushAudio() is called when playback via
PushAudio() ends.

::

tmResult (*StopPushAudio)(
const tmStdParms* inStdParms,
const tmInstance* inInstance);

SetStreamingStateChangedCallback Set the host callback for notification streaming state
changes, i.e. when the plug-in becomes active or
inactive due to changes connections or enablement
from the host.

::

tmResult (*SetStreamingStateChangedCallback)(
const tmStdParms* inStdParms,
void* inContext,
tmStreamingStateChangedCallback inCallback);

EnableStreaming Enable/disable streaming to connected clients without
loading or unloading the plug-in.

::

tmResult (*EnableStreaming)(
const tmStdParms* inStdParms,
prBool inEnabled);

IsStreamingEnabled Returns whether streaming is enabled.

::

tmResult (*IsStreamingEnabled)(
const tmStdParms* inStdParms,
prBool* outEnabled);

IsStreamingActive Returns whether the plug-in is actively streaming, i.e.
streaming is enabled and the plug-in has active
connections.

::

tmResult (*IsStreamingActive)(
const tmStdParms* inStdParms,
prBool* outActive);

274 Chapter 57. tmModule Functions

CHAPTER

FIFTYEIGHT

TMMODULE STRUCTURES

58.1 tmStdParms

This is passed to all calls. Most of it is allocated and filled in by the transmitter on Startup, and may be modified during
SetupDialog.

typedef struct {
csSDK_int32 inPluginIndex;
PrMemoryPtr ioSerializedPluginData;
csSDK_size_t ioSerializedPluginDataSize;
void* ioPrivatePluginData;
piSuitesPtr piSuites;

} tmStdParms;

inPluginIndexIf the plugin has defined multiple transmitters in the same module, this index value tells them apart.
ioSerializedPluginDataThis data should contain user-selectable settings for the transmitter, that would be shown in the transmitter

settings dialog, and need to persist so they can be saved and restored from one session to another.
When allocating this for the first time during Startup, this must be allocated using NewPtr so it can be
disposed by the host on shutdown.
This must be flat memory that can be serialized by by the host and will be already filled in when Startup
is called if previously available.

ioSerializedPluginDataSizeSize of the data above. Set this during Startup, if not already set.
ioPrivatePluginDataThis data should contain any memory needed for use across calls to the transmitter, except the settings

data stored in ioSerializedPluginData.
Allocate this during Startup. Unlike ioSerializedPluginData, it does not need to be flat, and must
be disposed of by the plugin on Shutdown.

58.2 tmPluginInfo

This is to be filled in by the transmitter on Startup.

typedef struct {
prPluginID outIdentifier;
unsigned int outPriority;
prBool outAudioAvailable;
prBool outAudioDefaultEnabled;

(continues on next page)

275

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

prBool outClockAvailable;
prBool outVideoAvailable;
prBool outVideoDefaultEnabled;
prUTF16Char outDisplayName[256];
prBool outHideInUI;
prBool outHasSetup;
csSDK_int32 outInterfaceVersion;

} tmPluginInfo;

outIdentifier Persistent plugin identifier.
outPriority 0 is default, higher priority wins.
outAudioAvailable Set this to kPrTrue if the transmitter supports audio.
outAudioDefaultEnabled Set this to kPrTrue if you want to be turned on to handle

audio by default.

outClockAvailable Set this to kPrTrue if providing plugin based audio.

Currently, even if using host-based audio, a transmitter
must provide a clock - please let us know if you would
like to use host-based audio only, and we will log a bug
on this.

outVideoAvailable Set this to kPrTrue if the transmitter supports video.
outVideoDefaultEnabled Set this to kPrTrue if you want to be turned on to handle

video by default.
outDisplayName[256] Set the display name of the transmitter, up 256 UTF-16

characters, including NULL terminator.
outHideInUI Set this to kPrTrue if you don’t want this to show up as

a user-selectable option in the transmitter choices.
outHasSetup Set this to kPrTrue if providing a setup dialog.
outInterfaceVersion Set this to the tmInterfaceVersion that the transmit-

ter is being compiled for.
outPushAudioAvailable New in 24.0. Set this to kPrTrue if the transmitter sup-

ports push audio functionality. The device will be en-
abled for a ‘secondary’ mode where audio from the ‘pri-
mary’ or ‘clock’ device is pushed to this one.

outHasStreaming New in 24.0. Set this to kPrTrue if the transmitter
streams audio or video (over a network).

the device will be
** enabled for a “secondary” mode where audio from the “primary” or “clock” ** device is pushed to this one.
** This is especially useful for remote devices. ** PushAudio APIs will only be used in this “mirror” case.
** StartPushAudio() initializes the device for subsequent PushAudio() calls. ** Unlike StartPlaybackClock,
StartPushAudio() is only called ** once until StopPushAudio() is called. ** PushAudio() is called whenever the
desired buffer size is

276 Chapter 58. tmModule Structures

Premiere Pro C++ SDK Guide, Release 24.0

58.3 tmInstance

This structure contains information for the transmitter to use for initializing an instance.

typedef struct {
csSDK_int32 inInstanceID;
PrTimelineID inTimelineID;
PrPlayID inPlayID;
prBool inHasAudio;
csSDK_uint32 inNumChannels;
PrAudioChannelLabel inChannelLabels[16];
PrAudioSampleType inAudioSampleType;
float inAudioSampleRate;
prBool inHasVideo;
csSDK_int32 inVideoWidth;
csSDK_int32 inVideoHeight;
csSDK_int32 inVideoPARNum;
csSDK_int32 inVideoPARDen;
PrTime inVideoFrameRate;
prFieldType inVideoFieldType;
void* ioPrivateInstanceData;

} tmInstance;

inInstanceID Instance identifier.
inTimelineID TimelineID, for use with various suite functions. May be 0.
inPlayID PlayID, for use with various suite functions. May be 0.
inHasAudio True if the instance is handling a sequence with audio.
inNumChannels The number of audio channels.
inChannelLabels[16]The identifiers for each audio channel.
inAudioSampleType The format of the audio data.
inAudioSampleRate The sample rate of the audio data.
inHasVideo True if the instance is handling a sequence with video.
inVideoWidth The video resolution.
inVideoHeight
inVideoPARNum The numerator and denominator of the video pixel aspect ratio.
inVideoPARDen
inVideoFrameRate The frame rate of the video.
inVideoFieldType The field dominance of the video.
ioPrivateInstanceDataMay be written by plugin in CreateInstance, and disposed of by DisposeInstance.

Need not be serializable by the host.

58.3. tmInstance 277

Premiere Pro C++ SDK Guide, Release 24.0

58.4 tmAudioMode

A full description of an audio mode that the transmitter will support.

The transmitter should fill in this information during QueryAudioMode.

typedef struct {
float outAudioSampleRate;
csSDK_uint32 outMaxBufferSize;
csSDK_uint32 outNumChannels;
PrAudioChannelLabel outChannelLabels[16];
PrTime outLatency;
PrSDKString outAudioOutputNames[16]

} tmAudioMode;

outAudioSampleRateThe preferred audio sample rate.
outMaxBufferSizeThe maximum audio buffer size needed if the transmitter uses plugin-based audio to request audio buffers

using the Playmod Audio Suite.
outNumChannelsThe maximum number of audio channels supported.
outChannelLabels[16]Set the audio channel configuration for the output hardware using the appropriate identifiers for each audio

channel.
outLatencyThis value is only used for playback, not when scrubbing.

It specifies how early to send frames in advance when audio-only playback starts, and how many frames
that will be sent prior to a StartPlaybackClock call. Use this value to get playback in sync between the
Source/Program Monitors and external hardware output.
All modes must have the same latency.
Take care to not set this value any higher than necessary, since playback start will delayed by this amount.
A value equivalent to 5 video frames or less is recommended.

outAudioOutputNames[16]New in CS6.0.2. These must be displayable names of physical audio outputs like “XYZ HD Speaker 1”
The audio output names in tmAudioMode should be allocated by the plugin using the String Suite and
NOT disposed by the plugin. The host will take care of disposing these strings.

58.5 tmVideoMode

A full description of a video mode that the transmitter will support.

Transmitter should fill in this information during QueryVideoMode.

typedef struct {
csSDK_int32 outWidth;
csSDK_int32 outHeight;
csSDK_int32 outPARNum;
csSDK_int32 outPARDen;
prFieldType outFieldType;
PrPixelFormat outPixelFormat;
PrSDKString outStreamLabel;
PrTime outLatency;
ColorSpaceRec outColorSpaceRec;

} tmVideoMode;

278 Chapter 58. tmModule Structures

Premiere Pro C++ SDK Guide, Release 24.0

outWidthThe preferred video resolution.
Set to 0 if any resolution is supported.

outHeight
outPARNumThe preferred video pixel aspect ratio.

Set to 0 if any pixel aspect ratio is supported.
outPARDen
outFieldTypeThe supported video field type.

Set to prFieldsAny if any field dominance is supported.
outPixelFormatThe preferred video pixel format.

Set to PrPixelFormat_Any if any format is acceptable.
If your transmitter would benefit from on-GPU frames, please let us know.

outStreamLabelLeave this as 0 for now. Stream labels are not yet supported by transmitters (bug group BG127571)
outLatencyThis value is only used for playback, not when scrubbing.

It specifies how early to send frames in advance when playback starts, and how many frames that will be
sent prior to a StartPlaybackClock call.
Use this value to get playback in sync between the Source/Program Monitors and external hardware output.
All modes must have the same latency.
Take care to not set this value any higher than necessary, since playback start will delayed by this amount.
A value equivalent to 5 frames or less is recommended.

outColorSpaceRecNew in 14.x. Definition of the colorspace in use; defaults to BT 709 full range 32f.
Transmitter can request host application to send frame in specific colorspace. See to ColorSpaceRec for
detailed description.

58.6 tmPlaybackClock

This structure is filled out by the host and sent to the transmitter to describe the playback clock to be managed by the
transmitter.

The transmitter uses the callback here to update the host at regular intervals.

typedef struct {
tmClockCallback inClockCallback;
void* inCallbackContext;
PrTime inStartTime;
pmPlayMode inPlayMode;
float inSpeed;
PrTime inInTime;
PrTime inOutTime;
prBool inLoop;
tmDroppedFrameCallback inDroppedFrameCallback;

} tmPlaybackClock;

58.6. tmPlaybackClock 279

Premiere Pro C++ SDK Guide, Release 24.0

tmClockCallback A pointer to a call with the following signature:

void (*tmClockCallback)(
void* inContext,
PrTime inRelativeTimeAdjustment);

Call this function when the time changes with a non-
speed adjusted amount to increment the clock by.
This can be called once per frame in response to
PushVideo.
Using a negative time should only be used to wait for
device, not to achieve sync.
The transmitter will not receive any frames while using
a negative time.
After the first positive valued clock call-
back, the time will be in StartTime +
inRelativeTimeAdjustment * inSpeed.

inCallbackContext Pass this into the clock callback above.
inStartTime Start the clock at this time.
inPlayMode Specifies whether the StartPlaybackClock was set

for playback or scrubbing.
inSpeed 1.0 is normal speed, -2.0 is double speed backwards.

Informational only.
This is useful for the built-in DV transmitter, which only
writes DV captions if playing at regular speed.

inInTime Informational only and will be handled by the host.
inOutTime
inLoop
inDroppedFrameCallback A pointer to a call with the following signature:

void (*tmDroppedFrameCallback)(
void* inContext,
csSDK_int64 inNewDroppedFrames);

Use this call to report frames pushed to the transmit plu-
gin on PushVideo but not delivered to the device.
If every frame pushed to the transmitter is sent out to
hardware on time, then this should never need to be
called as the host will count frames not pushed to the
plugin.
inNewDroppedFrames should be the number
of additional dropped frames since the last time
tmDroppedFrameCall back was called.

280 Chapter 58. tmModule Structures

Premiere Pro C++ SDK Guide, Release 24.0

58.7 tmPushVideo

Describes a frame of video to be transmitted.

typedef struct {
PrTime inTime;
pmPlayMode inPlayMode;
PrRenderQuality inQuality;
const tmLabeledFrame* inFrames;
csSDK_size_t inFrameCount;

} tmPushVideo;

inTime Describes which frame of the video is being passed in.
A negative value means the frame should be displayed
immediately.
Use this value to determine the corresponding timecode
for the frame being pushed.

inPlayMode Pass this into the clock callback above.
inQuality The quality of the render.
inFrames The frame or set of frames to transmit. As of CS6, this

will always be a single frame.
tmLabeledFrame is defined as:
typedef struct {
PPixHand inFrame;
PrSDKStreamLabel inStreamLabel;

} tmLabeledFrame;

The frame(s) must be disposed of by the transmitter
when done.

inFrameCount The number of frames in inFrames.

58.8 tmPushAudio

Describes audio samples to be transmitted.

typedef struct {
PrTime inTime;
float** inBuffers;
csSDK_uint32 inNumSamples;
csSDK_uint32 inNumChannels;

} tmPushAudio;

inTime Describes which frame of the video is being passed in.
A negative value means the frame should be displayed immediately.
Use this value to determine the corresponding timecode for the frame being pushed.

inBuffersThe audio date to be transmitted.
inNumSamplesNumber of samples to process.
inNumChannelsNumber of channels to output.

58.7. tmPushVideo 281

Premiere Pro C++ SDK Guide, Release 24.0

58.9 tmStopPushAudio

Sent when playback via PushAudio() ends.

typedef struct {
PrTime inTime;
float** inBuffers;
csSDK_uint32 inNumSamples;
csSDK_uint32 inNumChannels;

} tmPushAudio;

inTime Describes which frame of the video is being passed in.
A negative value means the frame should be displayed immediately.
Use this value to determine the corresponding timecode for the frame being pushed.

inBuffersThe audio date to be transmitted.
inNumSamplesNumber of samples to process.
inNumChannelsNumber of channels to output.

282 Chapter 58. tmModule Structures

CHAPTER

FIFTYNINE

SUITES

For information on how to acquire and manage suites, as well as information on more suites that are available to other
plugin types beyond just transmitters, see SweetPea Suites.

59.1 Playmod Audio Suite

This suite is used to play audio during playback. There are many more functions that were used by players, still
documented in the players chapter. Here we will only consider the single call in the suite that is relevant to transmitters.

59.1.1 Host-Based, or Plug-in Based Audio?

A transmitter has two choices for playing audio: it can ask the host to play the audio through the audio device selected
by the user, or it can get audio buffers from the host and handle its own playback of audio.

59.1.2 GetNextAudioBuffer

Retrieves from the host the next contiguous requested number of audio sample frames, specified in inNumSample-
Frames, in inInBuffers as arrays of uninterleaved floats.

The plugin must manage the memory allocation of inInBuffers, which must point to n buffers of floating point values
of length inNumSampleFrames, where n is the number of channels. This call is only available if InitPluginAudio was
used.

Returns:

• suiteError_NoError,

• suiteError_PlayModuleAudioNotInitialized, or

• suiteError_PlayModuleAudioNotStarted

prSuiteError (*GetNextAudioBuffer)(
csSDK_int32 inPlayID,
float** inInBuffers,
float** outOutBuffers,
unsigned int inNumSampleFrames);

283

Premiere Pro C++ SDK Guide, Release 24.0

Param-
eter

Description

inInBuffersCurrently unused in CS6.
A pointer to an array of buffers holding inNumSampleFrames input audio in each buffer, corresponding
to the total number of available input channels.

outOutBuffersA pointer to an array of buffers inNumSampleFrames long into which the host will write the output
audio.
There must be N buffers, where N is the number of output channels for the output channel type specified
in InitPluginAudio.

inNumSampleFramesThe size of each of the buffers in the array in both inInBuffers and outOutBuffers.

59.2 Transmit Invocation Suite

This suite can be used by other types of plugins to push frames to transmitters.

For example, an effect or titler with a modal setup dialog could push frames to the output.

284 Chapter 59. Suites

CHAPTER

SIXTY

VIDEO FILTERS

We strongly recommend using the After Effects SDK to develop effects plugins.

Almost all of the effects included in Premiere Pro are After Effects plugins, and future development will be based on
the After Effects API.

Video filters process a video frame into a destination frame. Filter parameters can vary with time.

Premiere provides basic user interface in the Effect Controls panel, drawing sliders, color pickers, angle dials, and
checkboxes based on the parameter definitions in the PiPL resource. Video filters can have their own custom modal
setup dialog for additional settings.

If you’ve never developed a video filter before, you can skip Whats New, and go directly to Getting Started.

285

Premiere Pro C++ SDK Guide, Release 24.0

286 Chapter 60. Video Filters

CHAPTER

SIXTYONE

WHATS NEW

61.1 What’s New in Premiere Pro CS5?

In the Effects panel, video filters now appear with badges to advertise if they support YUV, 32- bit, and accelerated
rendering.

The user can filter the list of effects to show only the effects that support those rendering modes. Video filters will auto-
matically receive YUV and 32-bit badges if they advertise support using the existing fsGetPixelFormatsSupported.

Custom badges can also be created. See Effect Badging for more information.

61.2 What’s New in Premiere Pro CS3?

Checkbox controls are now supported directly in the Effect Controls panel.

Filters can specify whether or not they want a setup button in the Effect Controls panel during fsHasSetupDialog,
by returning fsHasNoSetupDialog or fsNoErr.

Previously, this was set in the PiPL resource.

287

Premiere Pro C++ SDK Guide, Release 24.0

288 Chapter 61. Whats New

CHAPTER

SIXTYTWO

GETTING STARTED

Begin with one of the two video filter sample projects, progressively replacing its functionality with your own.

62.1 Resources

Filter plugins can use PiPL resources to define their behaviors and supported properties.

To provide any parameters in the Effect Controls panel, they must be defined in the PiPL in ANIM_ParamAtom sections,
as demonstrated in the example below.

The ‘no UI’ UI type is for non-keyframeable parameters. After making changes to the PiPL, rebuild the plugin each
time, so that the PiPL will be recompiled.

62.1.1 A Filter PiPL Example

#include "PrSDKPiPLVer.h"
#ifndef PRWIN_ENV
#include "PrSDKPiPL.r"
#endif

// The following two strings should be localized
#define plugInName "Cool Video Filter"
#define plugInCategory "SDK Filters"

// This name should not be localized or updated
#define plugInMatchName "SDK Cool Filter"

resource 'PiPL' (16000) {
{
// The plugin type
Kind {PrEffect},

// The plugin name as it will appear to the user
Name {plugInName},

// The internal name of this plugin
AE_Effect_Match_Name {plugInMatchName},

(continues on next page)

289

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

// The folder containing the plugin in the Effects Panel
Category {plugInCategory},

// The version of the PiPL resource definition
AE_PiPL_Version {PiPLVerMajor, PiPLVerMinor},

// The ANIM properties describe the filter parameters, and also how the data is␣
→˓stored in the project file. There is one ANIM_FilterInfo property followed by n ANIM_
→˓ParamAtoms

ANIM_FilterInfo {
0,
#ifdef PiPLVer2p3

// Non-square pixel aspect ratio supported
notUnityPixelAspectRatio,
anyPixelAspectRatio,
reserved4False,
reserved3False,
reserved2False,

#endif
},

reserved1False, // These flags are for use by After Effects
reserved0False, // Not used by Premiere
driveMe, // Not used by Premiere
needsDialog, // Not used by Premiere
paramsNotPointer, // Not used by Premiere
paramsNotHandle, // Not used by Premiere
paramsNotMacHandle, // Not used by Premiere
dialogNotInRender, // Not used by Premiere
paramsNotInGlobals, // Not used by Premiere
bgAnimatable, // Not used by Premiere
fgAnimatable, // Not used by Premiere
geometric, // Not used by Premiere
noRandomness, // Not used by Premiere

// Put the number of parameters here
2,

plugInMatchName

// There is one ANIM_ParamAtom for each parameter
ANIM_ParamAtom {
// This is the first property - Zero based count
0,

// The name to appear for the control
"Level",

// Parameter number goes here - One based count
1,

(continues on next page)

290 Chapter 62. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

// Put the data type here
ANIM_DT_SHORT,

// UI control type
ANIM_UI_SLIDER,
0x0,
0x0, // valid_min (0.0)
0x405fc000,
0x0, // valid_max (127.0)
0x0,
0x0, // ui_min (0.0)
0x40590000,
0x0, // ui_max (100.0)

#if PiPLVer2p3
// New - Scale/dontScale UI Range if user modifies
dontScaleUIRange,
#endif

},

// Set/don't set this if the param should be animated
animateParam,
dontRestrictBounds, // Not used by Premiere
spaceIsAbsolute, // Not used by Premiere
resIndependent, // Not used by Premiere

// Bytes size of the param data
2

ANIM_ParamAtom {
1,
"Target Color", 2,

// Put the data type here
ANIM_DT_COLOR_RGB,

// UI control type
ANIM_UI_COLOR_RGB,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,

#ifdef PiPLVer2p3
dontScaleUIRange,
#endif

(continues on next page)

62.1. Resources 291

Premiere Pro C++ SDK Guide, Release 24.0

(continued from previous page)

// Set/don't set this if the param should be animated
animateParam,
dontRestrictBounds,
spaceIsAbsolute,
resIndependent,

// Bytes size of the param data
4

},
}

};

62.2 Entry Point

short xFilter (
short selector,
VideoHandle theData)

selector is the action Premiere wants the video filter to perform.

EffectHandle provides source and destination buffers, and other useful information.

Return fsNoErr if successful, or an appropriate return code.

292 Chapter 62. Getting Started

CHAPTER

SIXTYTHREE

SELECTOR TABLE

This table summarizes the various selector commands a video filter can receive.

Selector Op-
tional?

Description

fsInitSpec Yes Allocate and initialize your parameters with default values without popping a modal setup
dialog.

fsHasSetup-
Dialog

Yes New for Premiere Pro CS3. Specify whether or not the filter has a setup dialog.

fsSetup Yes Allocate memory for your parameters if necessary.
Display your modal setup dialog with default parameter values or previously stored values.
Save the new values to specsHandle.

fsExecute No Filter the video using the stored parameters from specsHandle.
Be aware of interlaced video, and don’t overlook the alpha channel!

fsDispose-
Data

Yes Dispose of any instance data created during fsExecute.

fsCanHan-
dlePAR

Yes Tell Premiere how your effect handles pixel aspect ratio.

fsGetPix-
elFor-
matsSup-
ported

Yes Gets pixel formats supported. Called iteratively until all formats have been given.

fsCacheOn-
Load

Yes Return fsDoNotCacheOnLoad to disable plugin caching for this filter.

293

Premiere Pro C++ SDK Guide, Release 24.0

294 Chapter 63. Selector Table

CHAPTER

SIXTYFOUR

SELECTOR DESCRIPTIONS

64.1 fsInitSpec

Responding to this selector is optional. This selector is sent when the filter is applied to a clip and the plugin is called
for the first time. This call can be used to initialize the plugin parameters with default values in order to achieve an
initial “silent setup”, in which fsSetup is skipped when the filter is applied to a clip, to avoid popping the modal dialog
that may be needed in fsSetup.

Allocate and pass back a handle to a structure containing the parameter values in specsHandle. The filter is given the
total duration (in samples), and number of the first sample in the source buffer.

64.2 fsHasSetupDialog

New for Premiere Pro CS3. Optional. Specify whether or not the filter has a setup dialog, by returning fsHasNoSe-
tupDialog or fsNoErr.

64.3 fsSetup

Optional. Sent when the filter is applied, if fsInitSpec doesn’t allocate a valid specsHandle. Also sent when the user
clicks on the setup link in the Effect Controls Panel. The filter can optionally display a (platform-dependent) modal
dialog to get new parameter values from the user. First, check VideoHandle.specsHandle. If NULL, the plugin is being
called for the first time.

Initialize the parameters to their default values. If non-NULL, load the parameter values from specsHandle. Now use
the parameter values to display a modal setup dialog to get new values. Return a handle to a structure containing the
parameter values in specsHandle.

In order to properly store parameter values between calls to the plugin, describe the structure of your specsHandle data
in your PiPL’s ANIM properties. Premiere interpolates animatable parameter values as appropriate before sending
fsExecute.

The filter is given the total duration in samples and the sample number of the first sample in the source buffer.

During fsSetup, the frames passed to VideoRecord.source will almost always be 320x240. The exception is if the
plugin is receiving the fsSetup selector when the effect is initially applied, in which case it will receive a full height
frame, with the width adjusted to make the frame square pixel aspect ratio. For example, a filter applied in a 1440x1080

295

Premiere Pro C++ SDK Guide, Release 24.0

HDV sequence will receive a full 1920x1080 buffer. The frame is the layer the filter is applied to at the current time
indicator. If the CTI is not on the clip the filter is applied to, the frame is transparent black.

If the filter has a setup dialog, the VFilterCallbackProcPtr should be used to get source frames for previews.
getPreviewFrameEx can be used to get rendered frames, although if this call is used, the video filter should be ready
to be called reentrantly with fsExecute.

64.4 fsExecute

This is really the only required selector for a video filter, and it’s where the rendering happens. Take the input frame in
VideoHandle.source, render the effect and return the frame to Premiere in VideoHandle.destination. The specsHandle
contains your parameter settings (already interpolated if animatable). You can store a handle to any additional non-
parameter data in VideoHandle.InstanceData. If you do so, deallocate the handle in response to fsDisposeData, or your
plugin will leak memory.

The video your filter receives may be interlaced, in the field order determined by the project settings. If interlaced, your
plugin will be called twice for each frame of video, and each PPix will be half the frame height.

64.5 fsDisposeData

Optional. Called when the project closes. Dispose of any instance data created during fsExecute. See VideoHandle-
>InstanceData.

64.6 fsCanHandlePAR

Optional. Indicate how your filter wants to handle pixel aspect ratio by returning a combination of the following flags.

This selector is only sent if several conditions are met.

The pixel aspect ratio of the clip to which the filter is applied must be known, and not be square (1.0).

The clip must not be a solid color.

The PiPL bits anyPixelAspectRatio and unityPixelAspectRatio must not be set.

Flag Description
prEffectCanHandlePAR Premiere should not make any adjustment to the source image to compensate for

PAR
prEffectUnityPARSetup Premiere should render the source image to square pixels during fsSetup
prEffectUnityPARExecute Premiere should render the source image to square pixels during fsExecute

296 Chapter 64. Selector Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

64.7 fsGetPixelFormatsSupported

Optional.

Gets pixel formats supported.

Called iteratively until all formats have been given.

Set (*theData)->pixelFormatSupported to a supported pixel format, and return fsNoErr.

When all formats have been described, return fsBadFormatIndex.

See the field-aware video filter sample for an example.

64.8 fsCacheOnLoad

Optional. Return fsDoNotCacheOnLoad to disable plugin caching for this filter.

64.7. fsGetPixelFormatsSupported 297

Premiere Pro C++ SDK Guide, Release 24.0

298 Chapter 64. Selector Descriptions

CHAPTER

SIXTYFIVE

RETURN CODES

Return Code Reason
fsNoErr Operation has completed without error.
fsBadFormatIndex Return from fsGetPixelFormatsSupported when all pixel formats have been enumer-

ated.
fsDoNotCacheOnLoad Return from fsCacheOnLoad to disable plugin caching for this filter.
fsHasNoSetupDialog Return from fsHasSetupDialog to disable setup button in Effect Controls panel
fsUnsupported The selector is not recognized, or unsupported.

299

Premiere Pro C++ SDK Guide, Release 24.0

300 Chapter 65. Return Codes

CHAPTER

SIXTYSIX

VIDEORECORD

A video filter is passed a handle to a VideoRecord with almost every selector.

typedef struct {
PrMemoryHandle specsHandle;
PPixHand source;
PPixHand destination;
csSDK_int32 part;
csSDK_int32 total;
char previewing;
void* privateData;
VFilterCallBackProcPtr callBack;
BottleRec* bottleNecks;
short version;
short sizeFlags;
csSDK_int32 flags;
TDB_TimeRecord* tdb;
PrMemoryHandle instanceData;
piSuitesPtr piSuites;
PrTimelineID timelineData;
char altName[MAX_FXALIAS];
PrPixelFormat pixelFormatSupported;
csSDK_int32 pixelFormatIndex;
csSDK_uint32 instanceID;
TDB_TimeRecord tdbTimelineLocation;
csSDK_int32 sessionPluginID;

} VideoRecord, **VideoHandle;

301

Premiere Pro C++ SDK Guide, Release 24.0

specsHandle Instance settings, persistent across Premiere sessions.
Create this handle during fsInitSpec or fsSetup.
Populated by Premiere if the filter’s parameters can be
manipulated in the Effect Controls Panel.
Use Premiere’s memory allocation callbacks to allocate
memory for the specsHandle.

source PPixHand for the source video frame.
destination PPixHand for the destination video frame, always the

same size as source.
Store the output frame here during fsExecute.

part How far into the effect you are.
part varies from 0 to total, inclusive.

total Total length of the video filter.
Divide part by total to calculate the percentage of the
time-variant filter for a given fsExecute.
This value doesn’t necessarily correspond to frames or
fields.

previewing Unsupported
privateData Data private to Premiere.

Pass to the frame-retrieval callback when requesting a
frame.

callBack Pointer to VFilterCallbackProcPtr, used for retriev-
ing frames (or fields, for interlaced video) from source
clips.

bottleNecks Pointer to Premiere’s bottleRec functions.
version Version of this structure (kVideoFilterVersion).

• Premiere Pro CS5 =
VIDEO_FILTER_VERSION_11

• Premiere Pro CS3 =
VIDEO_FILTER_VERSION_10

sizeFlags Field-rendering information.
flags If doing a lower-quality render, Premiere will pass in

kEffectFlags_DraftQuality during fsExecute.
The filter can then optionally render a faster, lower-
quality image for previewing.

tdb Pointer to a time database record describing the se-
quence timebase.

instanceData Handle to private instance data that persists across invo-
cations.
Allocate the memory for this during fsExecute and
deallocate during fsDisposeData.
Do not use this field during fsSetup.

piSuites Pointer to callback piSuites.
timelineData Only available during fsInitSpec and fsSetup.

This opaque handle to the timeline database is required
by timelineFuncs callbacks available in piSuites.
This handle is useful in order to have a preview in a
modal setup dialog during fsSetup.

altName Unused.
pixelFormatSupported Only valid during fsGetPixelFormatsSupported.

Return pixel type supported.
pixelFormatIndex Only valid during fsGetPixelFormatsSupported.

Index of fourCC of pixel type supported.
instanceID The runtime instance ID uniquely identifies filters during

a session.
This is the same ID that is passed to players in
prtFilterRec.

tdbTimelineLocation A time database record describing the location of the fil-
ter in sequence.
Only valid during fsInitSpec and fsSetup.

sessionPluginID This ID should be used in the File Registration Suite
for registering external files (such as textures, logos, etc)
that are used by a plugin instance but do not appear as
footage in the Project Panel.
Registered files will be taken into account when trim-
ming or copying a project using the Project Manager.

302 Chapter 66. VideoRecord

Premiere Pro C++ SDK Guide, Release 24.0

66.1 VFilterCallBackProcPtr

Pointer to a callback for retrieving frames (or fields, for interlaced video) from the source clip.

Do not expect real-time performance from this callback.

typedef short (CALLBACK *VFilterCallBackProcPtr)(
csSDK_int32 frame;
PPixHand thePort;
RECT* theBox;
Handle privateData);

Param-
eter

Description

frame Frame requested. The frame value passed in should be frame * samplesize.
The callback will always return the current field (upper or lower) during field rendering.

thePort PPixHand where Premiere will store the frame
theBox Bounds of the frame you want Premiere to retrieve.
privateDataHandle provided by Premiere in VideoRecord.privateData

66.2 sizeFlags

For sizeFlags, the following bit flags are of interest:

Flag Description
gvFieldsEven The video filter should render upper-field dominance
gvFieldsOdd The video filter should render lower-field dominance
gvFieldsFirst The video filter is currently rendering the dominant field

66.1. VFilterCallBackProcPtr 303

Premiere Pro C++ SDK Guide, Release 24.0

304 Chapter 66. VideoRecord

CHAPTER

SIXTYSEVEN

ADDITIONAL DETAILS

67.1 Fields and Field Processing

In an interlaced project, Premiere calls your video filter once per field.

This allows video filters to have interlaced motion. (*theData)->total will be twice as large, each frame will be
half-height, and rowbytes will double.

Respect the value of rowbytes when traversing data or the output will be incorrect.

67.2 Frame Caching

The rendered output of video filters is stored in the host media cache. For example, when the user scrubs over a frame
with a filter on it, the filter will be called to render its effect on the frame and return the buffer to Premiere. Premiere
caches the returned frame, so when the user scrubs over the same frame, Premiere will return the cached frame without
having to call the filter again. If the user has modified the filter settings, the clip settings, the preview quality, etc,
Premiere will call the filter to render with the new settings, but will keep the previously cache frame for a while. So if
the changes are reversed, Premiere may still have the cached frame to return when appropriate.

If the filter should generate random, non-deterministic output, or if it changes over time without keyframes, the ran-
domness bit must be set in the ANIM_FilterInfo section in the PiPL (.r file).

If you set the bit to noRandomness, Premiere will only render one frame of a still image.

67.3 Creating Effect Presets

Effect presets appear in the Presets bin in the Effects panel, and can be applied just like Effects with specific parameter
settings and keyframes. Effect presets can be created as follows:

1) Apply a filter to a clip

2) Set the parameters of the filter, adding keyframes if desired

3) Right-click on the filter name in the Effect Controls panel, and select “Save Preset. . . ”

4) Create preset bins if desired by right-clicking in the Effects panel and choosing “New Presets Bin”

5) Organize the presets in the preset folders

6) Select the bins and/or presets you wish to export, right-click, and choose “Export Preset”

305

Premiere Pro C++ SDK Guide, Release 24.0

On Windows, newly created presets are saved in the hidden Application Data folder of the user’s Documents and
Settings (e.g. C:Documents and Settings[user]Application DataAdobe\ Premiere Pro[version]Effect Presets and Cus-
tom Items.prfpset). On Mac OS, they are in the user folder, at ~/Library/Application Support/Adobe/Premiere
Pro/[version]/Effect Presets and Custom Items.prfpset.

Effect Presets should be installed as described in the section, “Plug-in Installation”. Once they are installed in that
folder, they will be read-only, and the user will not be able to move them to a different folder or change their names.
User-created presets will be modifiable.

67.4 Effect Badging

Starting in CS5, video filters now appear with badges in the Effects panel to advertise if they support YUV, 32-bit,
and/or accelerated rendering. The user can filter the list of effects to show only the effects that support those rendering
modes. Video filters will automatically receive YUV and 32-bit badges if they advertise support using the existing
fsGetPixelFormatsSupported. Custom badges can also be created.

To add your own effect badge, go to the following folder:

On Windows: [App installation path]\Settings\BadgeIcons\\

On Mac OS: Adobe Premiere Pro CS5.app/Contents/Settings/BadgeIcons/

In that folder are the PNG graphics that are loaded at runtime for various badges, and an additional set of 'Sample-*.
png' and 'Sample.xml' files.

1) Make copies of the Sample-.png files, replacing the “Sample” prefix with the prefix that matches whatever you
want to call the new badge (like ‘NewBadge-.png’). Edit the PNG as you’d like, but don’t change the image
dimensions.

2) Copy the Sample.xml file to a new name that matches whatever you want to call the new badge (like ‘New-
Badge.xml’). Edit the list of match names that you want to be decorated with your badge. Change the <Name>
tag to the name you chose in step 1 (like ‘NewBadge’). You can also add your tooltip text as the <Description-
Item> tags. These tags act as a localization map with the langid as the key. If a language isn’t found, ‘en_US’ is
used by default. Provide your own GUID in the <Guid> tag.

3) Relaunch the application. You’ll get a badge filter icon next to the others and a badge icons next to each effect
that was listed in the XML file.

Note: ‘Sample’ is a special case that is intentionally excluded. Any other set of .xml/.png files will be used.

67.5 Premiere Elements and Effect Thumbnail Previews

Premiere Elements (but not Premiere Pro) displays visual icons for each effect. You will need to provide icons for your
effects, or else an empty black icon will be shown for your effects, or even worse behavior in Premiere Elements 8. The
icons are 60x45 PNG files, and are placed here:

[Program Files]AdobeAdobe Premiere Elements [version]Plug-insCommonEffectPreviews\

The filename should be the match name of the effect, which you specify in the PiPL, prefixed with “PR.” So if the
match name was “MatchName”, then the filename should be “PR.MatchName.png”

306 Chapter 67. Additional Details

CHAPTER

SIXTYEIGHT

GPU EFFECTS & TRANSITIONS

This chapter describes the additional capabilities available to effects and transitions for GPU interoperability with
Premiere Pro. The GPU extensions allow these plugins to have full access to GPU-resident frames without readback
to system memory, when using the Mercury Playback Engine in a GPU-accelerated mode. Effects and transitions can
also optionally tell the host that they support real-time processing, so that they will not be flagged as non-realtime.

The GPU extensions work on top of effects and transitions built using the After Effects SDK. The extensions are
designed to supplement a regular software effect or transition, which defines the software rendering path, parameters,
custom UI drawing, and other standard interaction. The GPU effect exists as a new entry point for rendering using the
GPU if possible. The software render path will be used otherwise.

68.1 System Requirements

The system requirements for developing GPU effects & transitions are higher than developing other plugins. You’ll
need a video card that supports Mercury Playback Engine GPU-

acceleration. Make sure your video card supports the type of video acceleration you are developing, on the platform
you are developing on. See this page for the latest supported video cards: https://helpx.adobe.com/premiere-pro/
system-requirements.html

The CUDA SDK is also needed for CUDA rendering development.

68.2 Compilation notes

CUDA

To compile GPU effects in Premiere SDK, we highly recommend using CUDA SDK 11.8.

Caution: GPU Effects built using CUDA SDK 11.8 will not work with NVIDIA Kepler generation cards. The minimum
CUDA Compute Capability has been increased to sm_50.

CUDA Runtime API vs. Driver API

1. Utilize CUDA Driver API

For best compatibility, we highly recommend utilizing CUDA Driver API only. Unlike the runtime API, the driver
API is directly backwards compatible with future drivers. Please note that the CUDA Runtime API is built to han-
dle/automate some of the housekeeping that is exposed and needs to be handled in the Driver APIs, so there might be
some new steps/code you would need to learn and implement for migrating from Runtime API to Driver API.

307

https://helpx.adobe.com/premiere-pro/system-requirements.html
https://helpx.adobe.com/premiere-pro/system-requirements.html

Premiere Pro C++ SDK Guide, Release 24.0

2. Statically Link to CUDA Runtime

If you must stick to CUDA Runtime API, we recommend you statically link to the CUDA Runtime. That’s an al-
ternative way for leveraging the backwards compatibility of the driver into the future. This can be done by linking
cudart_static.lib.

3. Dynamically Link to CUDA Runtime

This also works but would be prone to compatibility issues. A compatible CUDA Runtime DLL needs to be available
on users’ systems so that driver can understand and be backward compatible. Currently Premiere Pro ships a copy of
CUDA Runtime DLL of our recommended CUDA SDK version. This may change in future. If you must dynamically
link to CUDA Runtime, we recommend you ship a copy of the CUDA Runtime DLL with your plugin and leverage
dlopen/LoadLibrary to explicitly load the desired runtimes. For more details, see the CUDA Compatibility section of
NVIDIA’s GPU Management and Deployment guide: <https://docs.nvidia.com/deploy/cuda-compatibility/>

DirectX

We would like to announce that we have been working on introducing support for DirectX 12 in our rendering pipeline.
We will soon be sharing unlock instructions to enable DirectX in your application.

Why?

• Performance - DirectX 12 is a thin wrapper over the hardware which would provide us with more control than
OpenCL/CUDA over the execution of our shaders. This translates to a higher ceiling for performance

• Stability/Error Handling - DirectX 12 supports TDR detection and recovery which can help us recover from
hardware problems. It is actively supported by Microsoft i.e., proactive fixes for bugs in drivers

• Interoperability - Seamless interoperability with our display module which already uses DirectX12

Direction

Adding a new rendering engine to Premiere is a massive undertaking. Although we have made significant progress, it
is still under development and will have an update for you soon.

Feedback & Support

We will be happy to receive any thoughts regarding DirectX or answer any questions. I am reachable at, <pus-
ingha@adobe.com> or you can post them on ae_api_nda@adobe.com

308 Chapter 68. GPU Effects & Transitions

https://docs.nvidia.com/deploy/cuda-compatibility/
mailto:pusingha@adobe.com
mailto:pusingha@adobe.com

CHAPTER

SIXTYNINE

CUDA, OPENCL, METAL, OR OPENGL?

As of Summer 2021, Premiere Pro will no longer support OpenCL. The GPU architecture of Premiere Pro is entirely
CUDA/Metal, and this is what is exposed through the GPU extensions to the effect/transition APIs.

Premiere Pro plugins have the ability to transfer frames from CUDA to OpenGL (though not always efficiently). Read
more about that here.

309

Premiere Pro C++ SDK Guide, Release 24.0

310 Chapter 69. CUDA, OpenCL, Metal, or OpenGL?

CHAPTER

SEVENTY

WHAT’S NEW IN PREMIERE PRO 12.0?

GPU effects and transitions built using this SDK can now be compatible with After Effects 15.0 and later. The sample
GPU effect projects have been updated so that they load in both Premiere Pro and After Effects.

The newly provided PrGPU SDK macros and device functions allow you to write kernels that will compile on multiple
GPU compute languages - OpenCL, CUDA, and Metal.

311

Premiere Pro C++ SDK Guide, Release 24.0

312 Chapter 70. What’s New in Premiere Pro 12.0?

CHAPTER

SEVENTYONE

WHAT’S NEW IN PREMIERE PRO CC 2015.4?

GPU-accelerated rendering using Metal is now supported for third-party effects and transitions. PrGPUDeviceFrame-
work_Metal has been added as one of the enum values in PrGPUDeviceFramework.

313

Premiere Pro C++ SDK Guide, Release 24.0

314 Chapter 71. What’s New in Premiere Pro CC 2015.4?

CHAPTER

SEVENTYTWO

WHAT’S NEW IN PREMIERE PRO CC 2014?

OpenCL rendering now also uses the half-precision 16-bit floating point pixel format for rendering. GPU-accelerated
effects and transitions should implement both 16f and 32f rendering.

315

Premiere Pro C++ SDK Guide, Release 24.0

316 Chapter 72. What’s New in Premiere Pro CC 2014?

CHAPTER

SEVENTYTHREE

GETTING STARTED

73.1 Setting up the Sample Projects

If you are developing an effect, begin with one of the two GPU effect sample projects, progressively replacing its
functionality with your own. Refer to Introduction for general instructions on how to build the SDK projects.

In addition to those general instructions, the sample project is also dependent on the After Effects plugin SDK. On
Windows, create an environment variable pointing to it named AE_SDK_BASE_PATH, so that the compiler will find
the AE headers that the project includes. On macOS, in Xcode > Preferences > Locations > Custom Paths, specify
AE_SDK_BASE_PATH to be the root folder of the AE plugin SDK you have downloaded and unzipped.

The samples also use Boost, which may be downloaded at boost.org. Download that, and create a variable named
BOOST_BASE_PATH just as you did with AE_SDK_BASE_PATH above.

Finally, install Python (version 3.6 or greater), if you do not have it already. It may be downloaded at python.org. The
sample projects use this as part of the custom build steps.

Depending on whether your effect will use CUDA, you’ll need to download the CUDA SDK. On Windows, create an
environment variable pointing to it named CUDA_SDK_BASE_PATH, so that the linker will find the right libraries.

73.2 Querying for Parameters and other Attributes of a Effect or Tran-
sition

You’ll notice that PrGPUFilterRenderParams has some attributes about an effect or transition, but many things, such as
the parameters or duration of the clip to which the plugin is applied, are not found in that structure. These attributes will
need to be queried using the GetParam() and GetProperty() helper functions in PrGPUFilterModule.h. For example:

GetProperty(kVideoSegmentProperty_Effect_EffectDuration, duration);

GetProperty(kVideoSegmentProperty_Transition_TransitionDuration, duration);

317

Premiere Pro C++ SDK Guide, Release 24.0

73.3 Lifetime of a GPU Effect / Transition

A new GPU effect instance is created when an effect/transition is applied in the timeline, or when an effect parameter
is changed. When rendering a series of frames it won’t needlessly be recreated. The Opaque Effect Data Suite should
be used to share unflattened sequence data between instances of the same effect on a track item.

73.4 Fallback to Software Rendering

When a new GPU effect instance is created, the instance has the option of opting-in or out of providing GPU rendering.
The GPU effect should be reasonably sure it has sufficient resources to complete the render if it opts-in, because there
is no API support to fall back to software rendering in the middle of a render.

Calling GetDeviceInfo() in the GPU Device Suite, and checking outDeviceInfo.
outMeetsMinimumRequirementsForAcceleration, you can see if supports the minimum system requirements for
acceleration. Do not proceed with

AcquireExclusiveDeviceAccess(), if the minimum requirements are not met.

In emergency situations, when there is not enough GPU memory available to complete a render, an effect may call
PurgeDeviceMemory in the GPU Device Suite to free up memory not initially available. This will impact performance,
and should be used only if absolutely necessary.

73.5 OpenGL Interoperability

If you want, you have the ability to transfer frames from CUDA to OpenGL (though not always efficiently).

For CUDA interoperability with OpenGL:

CUDA -> OpenGL: Create an OpenGL buffer, map it into CUDA with cuGraphicsMapResources, get the mapped ad-
dress with cuGraphicsResourceGetMappedPointer, copy from the CUDA address to the mapped address with cuMem-
cpyDtoDAsync, unmap with cuGraphicsUnmapResources.

OpenGL -> CUDA: Map the OpenGL buffer into CUDA with cuGraphicsMapResources, get the mapped address with
cuGraphicsResourceGetMappedPointer, copy from the mapped address to CUDA with cuMemcpyDtoDAsync, unmap
with cuGraphicsUnmapResources.

Note that on the Mac there is no real OpenGL/CUDA interoperability, and these calls will go through system memory.

73.6 Entry Point

The GPU entry point function will only be called if the current project is using GPU acceleration. Otherwise, the
normal entry point function will be called as described in the After Effects SDK, or GPU Effects & Transitions or
Video Filters in this SDK Guide.

Make sure GPU acceleration is activated in File > Project Settings > General > Video Rendering and Playback >
Renderer. If a GPU option is not available, then you will need to install a suitable video card in your system.

318 Chapter 73. Getting Started

Premiere Pro C++ SDK Guide, Release 24.0

prSuiteError xGPUFilterEntry (
csSDK_uint32 inHostInterfaceVersion,
csSDK_int32* ioIndex,
prBool inStartup,
piSuitesPtr piSuites,
PrGPUFilter* outFilter,
PrGPUFilterInfo* outFilterInfo)

If inStartup is non-zero, the effect/transition should startup and initialize the functions needed to implement PrG-
PUFilter, as well as the info in PrGPUFilterInfo.

If inStartup is false, then the effect/transition should shutdown, unloading any resources it loaded on startup.

As of CC, inHostInterfaceVersion is PrSDKGPUFilterInterfaceVersion1 == 1.

If a single plugin supports multiple effects, increment ioIndex to the next value before returning, in order to be called
again to describe the next effect.

73.6. Entry Point 319

Premiere Pro C++ SDK Guide, Release 24.0

320 Chapter 73. Getting Started

CHAPTER

SEVENTYFOUR

PRGPUFILTER FUNCTION TABLE

PrGPUFilter is a structure consisting of the following functions that a effect/transition can implement.

Selector Op-
tional

Description

CreateInstance No Allocate and initialize any GPU resources.
DisposeInstance No Release GPU resources.
GetFrameDepen-
dencies

Yes If the rendered result of the effect/transition depends on frames other than the input
frame, specify these here.

PreCompute Yes Precompute.
Render No Render.

321

Premiere Pro C++ SDK Guide, Release 24.0

322 Chapter 74. PrGPUFilter Function Table

CHAPTER

SEVENTYFIVE

FUNCTION DESCRIPTIONS

75.1 CreateInstance

prSuiteError (*CreateInstance)(
PrGPUFilterInstance* ioInstanceData);

Creates a GPU filter instance representing an effect or transition on a track item.

Returning an error from CreateInstance will cause this node to be rendered in software for the current set of parameters.

Unlike software instances of effects and transitions, GPU instances are created and disposed whenever an effect param-
eter changes.

This allows an effect have more flexibility about opting-in for GPU rendering, depending on the parameters. Separate
instances may be called concurrently.

75.2 DisposeInstance

prSuiteError (*DisposeInstance)(
PrGPUFilterInstance* ioInstanceData);

Cleanup any resources allocated during CreateInstance.

75.3 GetFrameDependencies

prSuiteError (*GetFrameDependencies)(
PrGPUFilterInstance* inInstanceData,
const PrGPUFilterRenderParams* inRenderParams,
csSDK_int32* ioQueryIndex,
PrGPUFilterFrameDependency* outFrameDependencies);

Return dependency information about a render, or nothing if only the current frame is required.

Increment ioQueryIndex for additional dependencies.

323

Premiere Pro C++ SDK Guide, Release 24.0

75.4 PreCompute

prSuiteError (*Precompute)(
PrGPUFilterInstance* inInstanceData,
const PrGPUFilterRenderParams* inRenderParams,
csSDK_int32 inIndex,
PPixHand inFrame);

Precompute a result into preallocated uninitialized host (pinned) memory.

Will only be called if PrGPUDependency_Precompute was returned from GetFrameDependencies.

Precomputation may be called ahead of render time.

Results will be uploaded to the GPU by the host.

If outPrecomputePixelFormat is not custom, frames will be converted to the GPU pixel format.

75.5 Render

prSuiteError (*Render)(
PrGPUFilterInstance* inInstanceData,
const PrGPUFilterRenderParams* inRenderParams,
const PPixHand* inFrames,
csSDK_size_t inFrameCount,
PPixHand* outFrame);

Render into an allocated outFrame allocated with PrSDKGPUDeviceSuite or operate in place.

Result must be in the same pixel format as the input. If the effect grows or shrinks the output area (e.g. rendering a
drop shadow), it is allowable for the effect to allocate and return a different sized outFrame.

For effects, inFrames[0] will always be the frame at the current time, other input frames will be in the same order as
returned from GetFrameDependencies. For transitions inFrames[0] will be the incoming frame and inFrames[1] the
outgoing frame. Transitions may not have other frame dependencies.

Use the utility function GetParam to retrieve the parameter values at the current time.

324 Chapter 75. Function Descriptions

CHAPTER

SEVENTYSIX

RETURN CODES

Return Code Reason
malNoError No error.
malUnknownError Error.

325

Premiere Pro C++ SDK Guide, Release 24.0

326 Chapter 76. Return Codes

CHAPTER

SEVENTYSEVEN

STRUCTURE DESCRIPTIONS

77.1 PrGPUFilterInfo

This structure contains some basic info about a GPU filter. It provides access to various suites, and access to private
data where the instance can allocate memory and store data which will be passed to subsequent functions.

typedef struct {
csSDK_uint32 outInterfaceVersion;
PrSDKString outMatchName;

} PrGPUFilterInfo;

Member Description
outInterfaceVersionSet to the GPU API version corresponding to the version defined in the SDK you are using.
outMatchName outMatchName must be equal to a registered software filter, if NULL will default to the

module’s PiPL.

77.2 PrGPUFilterInstance

This structure contains some basic info about a GPU filter. It provides access to various suites, and access to private
data where the instance can allocate memory and store data which will be passed to subsequent functions.

typedef struct {
piSuitesPtr piSuites;
csSDK_uint32 inDeviceIndex;
PrTimelineID inTimelineID;
csSDK_int32 inNodeID;
void* ioPrivatePluginData;
prBool outIsRealtime;

} PrGPUFilterInstance;

327

Premiere Pro C++ SDK Guide, Release 24.0

Member Description
piSuites Standard suites.
inDeviceIndex For use with PrSDKGPUDeviceSuite.
inTimelineID For use with PrSDKVideoSegmentSuite.
inNodeID For use with PrSDKVideoSegmentSuite.
ioPrivatePluginDataUsed by a plugin to store instance data, never touched by the host.
outIsRealtime Specify if the plugin is likely to play in real-time, used to determine whether the segment is

red, yellow, or unmarked in the timeline.

77.3 PrGPUFilterRenderParams

This structure describes the current render request.

typedef struct {
PrTime inClipTime;
PrTime inSequenceTime;

// Render properties
PrRenderQuality inQuality;
float inDownsampleFactorX;
float inDownsampleFactorY;

// Frame properties
csSDK_uint32 inRenderWidth;
csSDK_uint32 inRenderHeight;
csSDK_uint32 inRenderPARNum;
csSDK_uint32 inRenderPARDen;
prFieldType inRenderFieldType;
PrTime inRenderTicksPerFrame;
pmFieldDisplay inRenderField;

} PrGPUFilterRenderParams;

Member Description
inClipTime The time of the current render, relative to clip start
inSequenceTimeThe time of the current render, relative to sequence start
inQuality Render quality; one of the PrRenderQuality enum values
inDownsampleFactorXHorizontal downsample factor
inDownsampleFactorYVertical downsample factor
inRenderWidthVideo resolution
inRenderHeight
inRenderPARNumVideo pixel aspect ratio, described as a fractional number with separate values for numerator and

denominator.
inRenderPARDen
inRenderFieldTypeRender field type
inRenderTicksPerFrameVideo frame rate
inRenderFieldGPU rendering is always done on full-height progressive frames unless

PrGPUFilterFrameDependency.outNeedsFieldSeparation is false.
inRenderField indicates which field is being rendered.

328 Chapter 77. Structure Descriptions

Premiere Pro C++ SDK Guide, Release 24.0

77.4 PrGPUFilterFrameDependency

This structure describes any dependencies for a rendered frame.

typedef struct {
PrGPUFilterFrameDependencyType outDependencyType;

// Dependence on other frame times
csSDK_int32 outTrackID;
PrTime outSequenceTime;

// Dependence on precomputation phase
PrPixelFormat outPrecomputePixelFormat;
csSDK_uint32 outPrecomputeFrameWidth;
csSDK_uint32 outPrecomputeFrameHeight;
csSDK_uint32 outPrecomputeFramePARNumerator;
csSDK_uint32 outPrecomputeFramePARDenominator;
prFieldType outPrecomputeFrameFieldType;
csSDK_size_t outPrecomputeCustomDataSize;
prBool outNeedsFieldSeparation;

} PrGPUFilterFrameDependency;

Member Description
outDependencyType The dependency type.

Could be either:
• PrGPUDependency_InputFrame,
• PrGPUDependency_Precompute,
• PrGPUDependency_FieldSeparation

outTrackID Specify which track is a dependency. Set to 0 for the
current track

outSequenceTime Set the sequence time which is a dependency.
outPrecomputePixelFormat Dependence on precomputation phase
outPrecomputeFrameWidth
outPrecomputeFrameHeight
outPrecomputeFramePARNumerator
outPrecomputeFramePARDenominator
outPrecomputeFrameFieldType
outPrecomputeCustomDataSize Only needed if outPrecomputePixelFormat is cus-

tom
outNeedsFieldSeparation Indicates the plugin may operate on both fields simulta-

neously (eg non-spatial and non-time varying)

77.4. PrGPUFilterFrameDependency 329

Premiere Pro C++ SDK Guide, Release 24.0

330 Chapter 77. Structure Descriptions

CHAPTER

SEVENTYEIGHT

PRGPU SDK MACROS

The PrGPU SDK macros and device functions allow you to write kernels that will compile on multiple GPU compute
languages - CUDA, OpenCL, and Metal. These languages have an enormous overlap - a C98 language subset, and by
using the porting macros and functions to abstract out the differences, you can write portable code. You can still access
API specific features not covered by the porting set but you’ll need to include an alternate code path for the other APIs.

Currently the SDK does not provide host side code to compile or launch arbitrary kernels, but there are SDK examples
that show how to do this for the different APIs.

The macros are not part of the plugin API - they are provided as a utility if you would like to used them. This gives
you broad latitude to fork them and make any changes you see fit without breaking plugin compatibility. On the Adobe
end, we may expand and modify the SDK kernel porting set in future releases to cover other compute APIs or other
enhancements.

78.1 External Dependencies

The macros do add one external source dependency - Boost (boost.org). We use the Boost preprocessor package to
manipulate kernel definitions.

Depending on how you choose to compile and deploy your kernels, we also provide a small python script that may be
useful (See “Preprocessing as a Separate Step”)

78.2 Include Paths

You need to add some include paths to your kernel compilation environment:

• the path to PrGPU/KernelSupport/ (found in the SDK at Examples/Projects/GPUVideoFilter/ Utils/)

• the path to the Boost library

331

Premiere Pro C++ SDK Guide, Release 24.0

78.3 Defines

You will also need to define a symbol to tell the header file what API to process when compiling the kernel:

• Metal: -DGF_DEVICE_TARGET_METAL=1

• OpenCL: - DGF_DEVICE_TARGET_OPENCL=1 - DGF_OPENCL_SUPPORTS_16F=1 or 0, depending on
whether you will support half (16-bit float) access for this device. Some older cards are quite slow at half support,
or just don’t support it.

• CUDA: the KernelCore.h header will automatically sense the cuda compiler and will #define
GF_DEVICE_TARGET_CUDA 1 for you.

Only one device target flag will be active in any given compilation. The header the define the device target macros to
0 for the inactive APIs. Feel free to use these macros in your code for any API specializations. Outside of the header,
we don’t need to do this much.

78.4 Header Files

• KernelCore.h - basic header macros. You’ll certainly want these

• KernelMemory.h - global device memory access abstractions for float and half

• FloatingPoint.h - common floating point routines. These mostly hide naming differences across APIs.

You’ll want to include them like this in your kernel:

#include "PrGPU/KernelSupport/KernelCore.h"

The folder contains additional files used by the above files.

One thing to watch out for is whether your projects are tracking header dependencies properly. If not, you’ll need to
manually recompile kernels when include files change. This is true whether or not you use the SDK porting set, so
you’ve likely already sorted this out.

78.5 Top Level Kernel Files

You can organize your code and projects as you like, but we find it convenient to have separate top level kernel files
for each API (.cl, .cu, and .metal) that just include shared code and are otherwise nearly empty. This makes build rules
much easier.

332 Chapter 78. PrGPU SDK Macros

Premiere Pro C++ SDK Guide, Release 24.0

78.6 Preprocessing as a Separate Step

If you compile the kernel source on the customer machine, you may wish to preprocess the kernel at plu-
gin compile time, and store the kernel source in your plugin. A python script (Python version 3 or greater
required) is provided that will convert preprocessed source to a character array. The script is in Exam-
ples/Projects/GPUVideoFilter/Utils/CreateCString.py. See the ProcAmp example for usage.

You can also compile kernels (which is always the case for CUDA) at plugin compile time, in which case you don’t
need the python script, or a separate preprocessing run. You will need to package the compiled kernel in your plugin
if you go this route.

The ProcAmp example uses a preprocessing step for OpenCL.

78.7 Declaring Kernels

Metal kernels require syntax that is quite different than CUDA, and the PrGPU macros use the Boost preprocessing
package to express parameters. This is by far the most complicated part of the package, so grab a fresh cup of coffee
and sit back for a read.

The GF_KERNEL_FUNCTION macro is used to pass values as parameters (CUDA) or in a struct (metal). The macro
will create an API-specific kernel entry point which will call a

function that it defines, leaving you to fill in the body. The macro uses Boost preprocessor sequences to express a
type/name pair:

(float)(inValue)

These pairs are then nested into a sequence of parameters:

((float)(inAge))((int)(inMarbles))

There are different categories of parameters, such as buffers, values, and kernel position. Each category sequence is a
separate macro parameter. Example usage:

GF_KERNEL_FUNCTION(RemoveFlicker,

//kernel name, then comma, ((GF_PTR(float4))(inSrc))

//all buffers and textures go after the first comma
((GF_PTR(float4))(outDest)),
((int)(inDestPitch))

//After the second comma, all values to be passed ((DevicePixelFormat)(inDeviceFormat))
((int)(inWidth))
((int)(inHeight)),
((uint2)(inXY)(KERNEL_XY))

//After the third comma, the position arguments.
((uint2)(inBlockID)(BLOCK_ID)))
{
<do something interesting here>

}

78.6. Preprocessing as a Separate Step 333

Premiere Pro C++ SDK Guide, Release 24.0

In the example above, the host does not pass the position values when invoking the kernel.

Position values are filled in automatically by the unmarshalling code generated by the GF_KERNEL_FUNCTION
macro. The code you write will actually end up in a device function that the unmarshalling code will call. See the
ProcAmp example plugin for usage.

Kernels that use statically sized shared memory use a different macro, GF_KERNEL_FUNCTION_SHARED. Please see the
header for details.

78.8 Declaring Device Functions

By comparison, device functions are a snap to write:

GF_DEVICE_FUNCTION float Average(float a, float b) {...

78.9 Other Macros and Functions

There’s a variety of other macros and functions in the KernelSupport headers. Please see the Headers and examples
for details.

334 Chapter 78. PrGPU SDK Macros

CHAPTER

SEVENTYNINE

SUITES

For information on how to acquire and manage suites, see SweetPea Suites.

79.1 GPU Device Suite

This suite provides info on any GPU devices available. For example, GetDeviceInfo() allows an effect/transition to see
if the device supports OpenCL or CUDA.

Use this suite to get exclusive access to a device using AcquireExclusiveDeviceAccess and ReleaseExclusiveDeviceAc-
cess. If needed, you can reconcile devices using the outDeviceHandle passed back from GetDeviceInfo().

Device memory should ideally be allocated through this suite. In some cases you may find it more efficient to use a
texture / image object as the source. With CUDA, you can bind a texture reference to an existing linear buffer. With
OpenCL, you can create an image object from an existing 2D buffer object using image_2d_from_buffer. Temporary
allocations are also fine but may be rather slow.

79.2 Opaque Effect Data Suite

This suite provides effects a way to share unflattened sequence data between instances of the same effect on a track
item. The data is opaque to the host and effects are responsible for maintaining thread safety of the shared data. The
host provides reference-counting that the effect can use to manage the lifetime of the shared data. Here’s an overview
of how this suite should be used:

When the effect is applied, in PF_Cmd_SEQUENCE_SETUP, the effect plugin allocates and initializes the sequence data
in PF_OutData->out_data. Then it calls

AcquireOpaqueEffectData(). The opaque effect data does not yet exist, so the plugin allocates it, and calls Regis-
terOpaqueEffectData, and then copies over the data from the sequence data. So both sequence data and opaque effect
data are allocated.

Then PF_Cmd_SEQUENCE_RESETUP is called (multiple times) for clones of the effect used for rendering. The ef-
fect instance knows it’s a clone because the PF_InData->sequence_data is NULL (there is a special case if the effect
has Opaque Effect Data – in that case, its render clones will receive PF_Cmd_SEQUENCE_RESETUP with a NULL se-
quence_data pointer). It then calls AcquireOpaqueEffectData(). As a render clone, it relies on this opaque effect data,
rather than sequence data, and does not try to copy the sequence data to opaque effect data.

When, on the other hand, SEQUENCE_RESETUP is called with valid sequence_data in PF_InData, this is not a render
clone. The plugin unflattens this sequence data. It then calls AcquireOpaqueEffectData(), and if the opaque effect data

335

Premiere Pro C++ SDK Guide, Release 24.0

does not yet exist (i.e. when reopening a saved project), the plugin allocates it, and calls RegisterOpaqueEffectData. It
then copies the sequence data to opaque effect data.

On SEQUENCE_FLATTEN, the plugin takes the unflattened data, flattens it, and disposes of the un-flat data.

When SEQUENCE_SETDOWN is called (it may be called multiple times to dispose of render clones), ReleaseOpaqueEf-
fectData() is called.

79.2.1 instanceID

The Opaque Effect Data Suite functions need the instanceID of the effect. For the software entry point, you can obtain
this using GetFilterInstanceID() in PF_UtilitySuite, defined in PrSDKAESupport.h. For the GPU Render entry point,
you can use the following code: csSDK_uint32 instanceID;

GetProperty(kVideoSegmentProperty_Effect_RuntimeInstanceID, instanceID);

. . .where GetProperty() is defined in PrGPUFilterModule.h, and the kVideoSegmentProperty_ IDs are defined in
PrSDKVideoSegmentProperties.h.

336 Chapter 79. Suites

CHAPTER

EIGHTY

AE TRANSITION EXTENSIONS

This chapter describes how to build native transitions in Premiere Pro based on the After Effects API. From a user-
perspective, plugins built this way can show their parameters directly in the Effect Controls panel, even providing
custom parameter UI in that panel or in the Sequence Monitor. Such plugins can run not only in Premiere Pro, but also
in After Effects, although they will appear as effects rather than transitions.

The transition extensions work on top of effects built using the After Effects SDK. Since AE effects only have a single
input, the second input is a layer parameter defined by the plugin.

337

Premiere Pro C++ SDK Guide, Release 24.0

338 Chapter 80. AE Transition Extensions

CHAPTER

EIGHTYONE

PF_TRANSITIONSUITE

In PrSDKAESupport.h, we’ve added PF_TransitionSuite::RegisterTransitionInputParam().

This call must be made before the PF_ADD_PARAM() call during PF_Cmd_PARAM_SETUP.

Pass in the param to be used as the input layer for the other side of the transition.

This enables your effect to be applied between two clips in the timeline just like our native transitions, but it will show
up in the Effect Controls panel with full keyframable parameters similar to existing AE effects.

339

Premiere Pro C++ SDK Guide, Release 24.0

340 Chapter 81. PF_TransitionSuite

CHAPTER

EIGHTYTWO

GETTING STARTED

82.1 Setting up the Sample Project

If you are developing an transition, begin with the SDK_CrossDissolve sample project, progressively replacing its
functionality with your own. Refer to Introduction for general instructions on how to build sample projects.

In addition to those general instructions, the sample project is also dependent on the After Effects SDK. Download it
here. On Windows, create an environment variable pointing to it named “AE_SDK_BASE_PATH”, so that the compiler
will find the AE headers that the project includes. On

MacOS, in XCode > Preferences > Locations > Custom Paths, specify AE_SDK_BASE_PATH to be the root folder of
the AE SDK you have downloaded and unzipped.

As of version 15.4, Premiere Pro no longer supports OpenCL.

If your transition uses CUDA, you’ll need to download the CUDA SDK. On Windows, create an environment variable
pointing to it named “CUDA_SDK_BASE_PATH”, so that the linker will find the right libraries.

82.2 Compatibility Considerations

For compatibility with plugin hosts that doesn’t support the AE Transition Extensions, a plugin should check first for
the existence of the PF_TransitionSuite suite. If it isn’t available, the plugin should act as a normal effect. This is
demonstrated in the SDK_CrossDissolve sample project.

341

Premiere Pro C++ SDK Guide, Release 24.0

342 Chapter 82. Getting Started

CHAPTER

EIGHTYTHREE

CONTROL SURFACES

Starting in Premiere Pro CC 2014, a control surface plugin can interface with a hardware control surface. This is the
API that provides built-in support for EUCON and Mackie devices to control audio mixing and basic transport controls.
The API supports two-way communication with Premiere Pro, so that hardware faders, VU meters, etc are in sync with
the application.

Compile the sample plugin into a subfolder of the main application folder: Plugins\\ ControlSurface\\

You should see the plugin in the PPro UI in Preferences > Control Surface, when you hit the Add button, as one of
the options in the Device Class drop-down next to Mackie and EUCON (currently shows as “SDK Control Surface
Sample”).

You’ll want to implement handlers for any relevant functions defined in the plugin suites here: adobesdk\
controlsurface\plugin

And to do that, you can use any APIs to call into the host defined in the host suites here: adobesdk\controlsurface\
host

83.1 Calling Sequence

When the application is launched, the control surface plugins are loaded, and the entry point is called. The host ID and
API version is passed in, and the plugin passes back ADOBESDK_ControlSurfacePluginFuncs, an array of function
pointers.

Next, the Startup() function is called, where the plugin registers a suite of functions as defined in ControlSurfacePlug-
inSuite.h. For each base class it will inherit from (defined in adobesdkcontrolsurfacepluginwrapper), it calls Register-
Suite(). These suites are the way for the host application to call the control surface plugin later on. There are separate
base classes for the transport controls, audio mixer, Lumetri Color controls, and more.

Then, CreatePluginInstance() is called. When a project is opened, Connect() is called. Here the plugin instantiates a
ControlSurface object, which inherits from any of the previously men-

tioned base classes. It acquire any host suites it needs, and then it passes back a reference to the ControlSurface object.

343

Premiere Pro C++ SDK Guide, Release 24.0

83.2 Getting Started

Please write us if you would like further guidance.

344 Chapter 83. Control Surfaces

	Version History
	Introduction
	What Premiere Plug-Ins Do
	SDK Audience
	Whats New
	What’s New in 24.0
	What’s New in 15.4
	What’s New in 14.2
	What’s New in 13.1
	What’s New in 13.0
	What’s New in 12.0
	Effects and Transitions

	What’s New in CC 2017.1
	Importers
	Exporters
	Transmit
	VR Video Support

	What’s New in CC 2017
	VR Video Support added
	New Sample Projects
	New Panel/Scripting Capabilities
	Miscellaneous

	What’s New in CC 2024.0
	What’s New in CC 2015.4
	Metal rendering for Effects and Transitions

	What’s New in CC 2015.3?
	Control Surfaces
	Importers
	Exporters
	Effects
	Misc

	What’s New in CC 2015.1?
	Transmit

	What’s New in CC 2015?
	After Effects-Style Transitions
	Source Settings = Effect + Importer
	Importers
	Exporters
	Transmitters
	Miscellaneous
	New Sample Projects

	What’s New in CC 2014 (8.2)?
	What’s New in CC 2014 (8.1)?
	What’s New in CC 2014 (8.0.1)?
	What’s New in CC 2014?
	What’s New in CC October 2013?
	What’s New in CC July 2013?
	What’s New in CC?
	New Edit to Tape Panel
	New GPU Extensions for Effects and Transitions
	Closed Captioning Support in Importer and Exporter APIs
	Miscellaneous Improvements

	What’s New in CS6.0.x?
	What’s New in CS6?
	Transmit API
	Exporter Enhancements
	Stereoscopic Video Pipeline
	Other Changes

	What’s New in CS5.5?
	What’s New in CS5?
	Mac 64-Bit and Cocoa

	What’s New in CS4?
	New Renderer API and Custom Pixel Formats
	Sequence Preview Formats
	Separate Processes During Export
	XMP metadata
	More Pixel Format Flexibility

	Legacy API

	Where Do I Start
	Document Overview
	Documentation Conventions

	Getting Support and Providing Feedback
	Premiere Pro Plug-In Types
	Other Supported Plug-In Standards
	Plug-in Support Across Adobe Video and Audio Applications
	Premiere Elements Plug-in Support
	What Exactly Is a Premiere Pro Plugin?

	Sample Projects
	Descriptions
	How To Build the SDK Sample Projects

	Debugging Plug-Ins
	Load Em Up
	Plug-in Caching
	Resolving Plug-in Loading Problems
	Library Linkage
	No Shortcuts

	Plug In Installation
	Windows
	macOS
	Plugin Naming Conventions
	Plugin Blocklisting (formerly Blacklisting)
	Creating Sequence Presets
	Application-level Preferences
	Dog Ears

	Localization
	Best Practices
	Structure Alignment

	Resources
	Plug-In Property Lists (PiPL) Resource
	Which Types of Plugins Need PiPLs?
	A Basic PiPL Example
	How PiPLs Are Processed By Resource Compilers

	IMPT Resource
	Universals
	Time
	scale over sampleSize
	PrTime

	Video Frames
	Pixel Formats And Color Spaces
	What Format Should I Use?
	Importers
	Effects
	Exporters and Transmitters
	Other Considerations

	Byte Order
	Unpacked, Uncompressed
	Unpacked, Uncompressed, native After Effects support only
	Unpacked, Uncompressed, with implicit alpha
	Linear RGB
	Packed, Uncompressed formats
	Compressed Y’UV
	Miscellaneous

	Custom Pixel Formats
	Smart Rendering

	Pixel Aspect Ratio
	Fields
	Audio
	32-bit Float, Uninterleaved Format
	Audio Sample Types
	Audio Sample Frames
	Audio Sample Rate
	Audio Channel Types

	Memory Management
	What Really is a Memory Problem?
	Solutions for Memory Contention

	Basic Types Structures
	Suites
	SweetPea Suites
	Overview
	Acquiring and Releasing the Suites
	Versioning

	App Info Suite
	Application Settings Suite
	Audio Suite
	Captioning Suite
	Clip Render Suite
	Error Suite
	File Registration Suite
	Flash Cue Marker Data Suite
	Image Processing Suite
	Marker Suite
	Memory Manager Suite
	ReserveMemory

	Pixel Format Suite
	Playmod Overlay Suite
	RenderImage
	GetIdentifier
	HasVisibleRegions
	VariesOverTime

	PPix Cache Suite
	PPix Creator Suite
	CreatePPix
	ClonePPix

	PPix Creator 2 Suite
	PPix Suite
	PrPPixBufferAccess
	Dispose
	GetPixels
	GetBounds
	GetRowBytes
	GetPixelAspectRatio
	GetUniqueKey
	GetUniqueKeySize
	GetRenderTime

	PPix 2 Suite
	RollCrawl Suite
	Sequence Info Suite
	String Suite
	Threaded Work Suite
	Time Suite
	pmPlayTimebase
	PrVideoFrameRates
	GetTicksPerSecond
	GetTicksPerVideoFrame
	GetTicksPerAudioSample

	Video Segment Render Suite
	Video Segment Suite
	Window Suite

	Legacy Callback Suites
	piSuites
	Memory Functions
	Window Functions
	PPix Functions
	Utility Functions
	Timeline Functions

	Bottleneck Functions

	Hardware
	Hardware Integration Components
	Importers
	Recorders
	Exporters
	Transmitters

	ClassID, Filetype and Subtype
	ClassData Functions
	Importers
	What’s New
	What’s New in Premiere Pro CC 2019 (13.0)
	What’s New in Premiere Pro CC 2014
	What’s New in Premiere Pro CC October 2013 release?
	What’s New in Premiere Pro CC?
	What’s New in Premiere Pro CS6.0.2?
	What’s New in Premiere Pro CS6?
	What’s New in Premiere Pro CS5.5?
	What’s New in Premiere Pro CS5?
	What’s New in Premiere Pro CS4?
	What’s New in Premiere Pro CS3?

	Getting Started
	The Basics of Import
	Try the Sample Importer Plug-ins
	imGetSourceVideo versus imImportImage
	Asynchronous Import
	privateData
	Clip Source Settings
	Showing a Video Preview in the Settings Dialog

	File Handling
	Quieting versus Closing a File
	Growing Files
	Importing from Streaming Sources

	Audio Conforming and Peak File Generation
	Quality Levels
	Closed Captioning
	N-Channel Audio
	Multiple Streams
	Stereoscopic Video

	Project Manager Support
	Creating a Custom Importer
	Real-Time Rolling and Crawling Titles
	Troubleshooting
	How to Get First Crack at a File
	Format repeated in menu?

	Resources
	Entry Point
	Standard Parameters
	Importer-Specific Callbacks

	Selector Table
	Selector Descriptions
	imInit
	Synthetic Importers
	Custom Importers

	imShutdown
	imGetIndFormat
	Synthetic Importer selectors

	imGetSupports8
	imGetSupports7
	imGetInfo8
	Synthetic Importers

	imCloseFile
	imGetIndPixelFormat
	imGetPreferredFrameSize
	imSelectClipFrameDescriptor
	imGetSourceVideo
	imCreateAsyncImporter
	imImportImage
	imImportAudio7
	imGetPrefs8
	Synthetic Importers
	Custom Importers

	imOpenFile8
	imQuietFile
	imSaveFile8
	imDeleteFile
	imCalcSize8
	imCheckTrim8
	imTrimFile8
	imCopyFile
	imRetargetAccelerator
	imQueryDestinationPath
	imInitiateAsyncClosedCaptionScan
	imGetNextClosedCaption
	imCompleteAsyncClosedCaptionScan
	imAnalysis
	imDataRateAnalysis
	imGetTimeInfo8
	imSetTimeInfo8
	imGetFileAttributes
	imGetMetaData
	imSetMetaData
	imDeferredProcessing
	imGetAudioChannelLayout
	imGetPeakAudio
	imQueryContentState
	imQueryStreamLabel
	imGetSubTypeNames
	imGetIndColorProfile
	imGetIndColorSpace
	imQueryInputFileList
	imGetEmbeddedLUT

	Return Codes
	Structures
	Structure Descriptions
	imAcceleratorRec
	imAnalysisRec
	imAsyncImporterCreationRec
	imAudioInfoRec7
	imCalcSizeRec
	imCheckTrimRec
	imClipFrameDescriptorRec
	imCompleteAsyncClosedCaptionScanRec
	imIndColorProfileRec
	imCopyFileRec
	imDataRateAnalysisRec
	imDeferredProcessingRec
	imDeleteFileRec
	imFileAccessRec8
	imFileAttributesRec
	imFileInfoRec8
	imFileOpenRec8
	imFileRef
	imFrameFormat
	imGetAudioChannelLayoutRec
	imGetNextClosedCaptionRec
	imGetPrefsRec
	imImageInfoRec
	Plug-in Info
	Bounds Info
	Time Info
	Format Info
	Unused

	imImportAudioRec7
	imImportImageRec
	Bounds Info (for imImportImageRec)
	Frame Info

	imImportInfoRec
	Screen Info
	File Handling Flags
	Setup Flags
	Memory Handling Flags
	Other
	Unused (in imImportInfoRec)

	imIndFormatRec
	imIndPixelFormatRec
	imInitiateAsyncClosedCaptionScanRec
	imMetaDataRec
	imPeakAudioRec
	imPreferredFrameSizeRec
	imQueryContentStateRec
	imQueryDestinationPathRec
	imQueryInputFileListRec
	imQueryStreamLabelRec
	imSaveFileRec8
	imSourceVideoRec
	imSubTypeDescriptionRec
	imTimeInfoRec8
	imTrimFileRec8
	imIndColorSpaceRec
	RawColorSpaceRec
	EmbeddedLUTRec
	imRenderContext

	Suites
	Suites
	Async File Reader Suite
	Deferred Processing Suite

	Export Controllers
	Exporters
	Whats New
	What’s New in CC
	What’s New in CS6
	What’s New in CS5.5
	Export Controller API

	What’s New in CS5
	Porting From the Compiler API

	Getting Started
	Media Encoder as a Test Harness
	Adding Parameters
	Updating Parameters Dynamically
	Supporting “Match Source”
	Get Video Frames and Audio Samples
	Pull Model

	Handling a Pause or Cancel by the User (Pull Model only)
	Creating Presets
	Media Encoder presets
	Premiere Pro presets
	Installation in CS4

	Parameter Caching
	Increment the Parameter Version
	Flush the Parameter Cache

	Multichannel Audio Layouts
	Closed Captioning
	Multiple File Formats
	Exporters Used for Editing Modes
	Sequence Encoder Presets
	Adding new Preview File Formats to Existing Editing Modes

	Stereoscopic Video
	Timeline Segments in Exporters
	Smart Rendering
	Entry Point
	Standard Parameters

	Selector Table
	Selector Descriptions
	exSelStartup
	exSelBeginInstance
	exSelGenerateDefaultParams
	exSelPostProcessParams
	exSelValidateParamChanged
	exSelGetParamSummary
	exSelParamButton
	exSelExport
	exSelExport2
	exSelQueryExportFileExtension
	exSelQueryOutputFileList
	exSelQueryStillSequence
	exSelQueryOutputSettings
	exSelValidateOutputSettings
	exSelEndInstance
	exSelShutdown
	exSelQueryExportColorSpace

	Return Codes
	Structures
	Structure Descriptions
	exDoExportRec
	exDoExportRec2
	exExporterInfoRec
	exExporterInstanceRec
	exGenerateDefaultParamRec
	exParamButtonRec
	exParamChangedRec
	exParamSummaryRec
	exPostProcessParamsRec
	exQueryExportFileExtensionRec
	exQueryOutputFileListRec
	exQueryOutputSettingsRec
	exQueryStillSequenceRec
	exValidateOutputSettingsRec
	exQueryExportColorSpaceRec

	Suites
	Export File Suite
	Export Info Suite
	GetExportSourceInfo

	Export Param Suite
	Export Progress Suite
	Export Standard Param Suite
	AddStandardParams
	PostProcessParamNames
	QueryOutputSettings
	MakeParamSummary

	Exporter Utility Suite
	DoMultiPassExportLoop
	ReportIntermediateProgressForRepeatedVideoFrame
	ReportEvent

	Palette Suite
	Sequence Audio Suite
	MakeAudioRenderer
	ReleaseAudioRenderer
	GetAudio
	ResetAudioToBeginning
	GetMaxBlip

	Sequence Render Suite
	MakeVideoRenderer()
	ReleaseVideoRenderer()
	struct SequenceRender_ParamsRec
	struct SequenceRender_ParamsRecExt
	struct SequenceRender_ParamsRecExt2
	struct SequenceRender_GetFrameReturnRec
	RenderVideoFrame()
	GetFrameInfo()
	SetAsyncRenderCompletionProc()
	PrSDKSequenceAsyncRenderCompletionProc()
	QueueAsyncVideoFrameRender()
	PrefetchMedia()
	PrefetchMediaWithRenderParameters()
	CancelAllOutstandingMediaPrefetches()
	IsPrefetchedMediaReady()
	MakeVideoRendererForTimeline()
	MakeVideoRendererForTimelineWithFrameRate()
	ReleaseVideoRendererForTimeline()
	RenderVideoFrameAndConformToPixelFormat()
	MakeVideoRendererForTimelineWithStreamLabel()
	RenderColorManagedVideoFrame()
	QueueAsyncColorManagedVideoFrameRender()
	PrefetchColorManagedMedia()
	PrefetchColorManagedMediaWithRenderParameters()
	RenderColorManagedVideoFrameAndConformToPixelFormat()
	RenderColorManagedVideoFrame2()
	QueueAsyncColorManagedVideoFrameRender2()
	PrefetchColorManagedMediaWithRenderParameters2()
	RenderColorManagedVideoFrameAndConformToPixelFormat2()

	PF Utility Suite
	GetFilterInstanceID()
	GetMediaTimecode()
	GetClipSpeed()
	GetClipDuration()
	GetClipStart()
	GetUnscaledClipDuration()
	GetUnscaledClipStart()
	GetTrackItemStart()
	GetMediaFieldType()
	GetMediaFrameRate()
	GetContainingTimelineID()
	GetClipName()
	EffectWantsCheckedOutFramesToMatchRenderPixelFormat()
	EffectDependsOnClipName()
	SetEffectInstanceName()
	GetFileName()
	GetOriginalClipFrameRate()
	GetSourceTrackMediaTimecode()
	GetSourceTrackClipName()
	GetSourceTrackFileName()
	EffectDependsOnClipName2()
	GetMediaTimecode2()
	GetSourceTrackMediaTimecode2()
	GetSourceTrackClipName2()
	GetSourceTrackFileName2()
	GetCommentString()
	GetLogNoteString()
	GetCameraRollString()
	GetClientMetadataString()
	GetDailyRollString()
	GetDescriptionString()
	GetLabRollString()
	GetSceneString()
	GetShotString()
	GetTapeNameString()
	GetVideoCodecString()
	GetGoodMetadataString()
	GetSoundRollString()
	GetSequenceTime()
	GetSoundTimecode()
	GetOriginalClipFrameRateForSourceTrack()
	GetMediaFrameRateForSourceTrack()
	GetSourceTrackMediaActualStartTime()
	IsSourceTrackMediaTrimmed()
	IsMediaTrimmed()
	IsTrackEmpty()
	IsTrackItemEffectAppliedToSynthetic()
	GetSourceTrackCurrentMediaTimeInfo()
	GetSequenceZeroPoint()
	GetSourceTrackCurrentClipDuration()
	GetSequenceDuration()
	GetVideoResolutionString()

	Additional Details
	Multiplexer Tab Ordering
	Creating a Non-Editable String in the Parameter UI
	Guidelines for Exporters in Premiere Elements
	Exporter Preset
	Return Values

	Transmitters
	What’s New in Premiere Pro 24.0?
	What’s New in Premiere Pro CS6.0.2?

	Transmitter Basics
	Basic Organization
	Video Formats
	Fractional Resolution
	Audio Format
	Frame Rate
	Dropped Frames
	Sync Between Application UI and Hardware Output
	Dog Ears
	Closed Captioning
	Driving Transmitters from Other Plugins
	Entry Point

	tmModule Functions
	tmModule Structures
	tmStdParms
	tmPluginInfo
	tmInstance
	tmAudioMode
	tmVideoMode
	tmPlaybackClock
	tmPushVideo
	tmPushAudio
	tmStopPushAudio

	Suites
	Playmod Audio Suite
	Host-Based, or Plug-in Based Audio?
	GetNextAudioBuffer

	Transmit Invocation Suite

	Video Filters
	Whats New
	What’s New in Premiere Pro CS5?
	What’s New in Premiere Pro CS3?

	Getting Started
	Resources
	A Filter PiPL Example

	Entry Point

	Selector Table
	Selector Descriptions
	fsInitSpec
	fsHasSetupDialog
	fsSetup
	fsExecute
	fsDisposeData
	fsCanHandlePAR
	fsGetPixelFormatsSupported
	fsCacheOnLoad

	Return Codes
	VideoRecord
	VFilterCallBackProcPtr
	sizeFlags

	Additional Details
	Fields and Field Processing
	Frame Caching
	Creating Effect Presets
	Effect Badging
	Premiere Elements and Effect Thumbnail Previews

	GPU Effects & Transitions
	System Requirements
	Compilation notes

	CUDA, OpenCL, Metal, or OpenGL?
	What’s New in Premiere Pro 12.0?
	What’s New in Premiere Pro CC 2015.4?
	What’s New in Premiere Pro CC 2014?
	Getting Started
	Setting up the Sample Projects
	Querying for Parameters and other Attributes of a Effect or Transition
	Lifetime of a GPU Effect / Transition
	Fallback to Software Rendering
	OpenGL Interoperability
	Entry Point

	PrGPUFilter Function Table
	Function Descriptions
	CreateInstance
	DisposeInstance
	GetFrameDependencies
	PreCompute
	Render

	Return Codes
	Structure Descriptions
	PrGPUFilterInfo
	PrGPUFilterInstance
	PrGPUFilterRenderParams
	PrGPUFilterFrameDependency

	PrGPU SDK Macros
	External Dependencies
	Include Paths
	Defines
	Header Files
	Top Level Kernel Files
	Preprocessing as a Separate Step
	Declaring Kernels
	Declaring Device Functions
	Other Macros and Functions

	Suites
	GPU Device Suite
	Opaque Effect Data Suite
	instanceID

	AE Transition Extensions
	PF_TransitionSuite
	Getting Started
	Setting up the Sample Project
	Compatibility Considerations

	Control Surfaces
	Calling Sequence
	Getting Started

